Theorie. Klasse 4

Aus Wikibooks
Zur Navigation springen Zur Suche springen

Svm 9 gaussiano.JPG

DEINE FESTE BEGLEITERIN
FÜR DIE SCHULMATHEMATIK
EINFACH
VERSTÄNDLICH
AUFBAUEND
GRATIS!*
UND SYMPATHISCH

JETZT STARTEN!
Faenza-video-x-generic.svgMap icons by Scott de Jonge - accounting.svgMIT MEHR ALS 200 THEORIE- UND AUFGABEN-ERKLÄRUNGSVIDEOS!
Cycling (road) pictogram.svg Mathe lernen ist wie Fahrradfahren lernen: Du kannst es dir stundenlang erklären lassen, du wirst nie fahren können, wenn du nicht selber zu fahren probierst.
AUFGABEN

Vorgabe des Ministeriums[Bearbeiten]

Arbeiten mit Zahlen und Maßen[Bearbeiten]

  • durch zusammenfassendes Betrachten das Zahlenverständnis vertiefen,
  • anhand einfacher Beispiele erkennen, dass es Rechensituationen gibt, die nicht mit Hilfe der rationalenZahlen lösbar sind,
  • Näherungswerte oder Schranken für irrationale Zahlen angeben können, auch unter Verwendungelektronischer Hilfsmittel,
  • bei Anwendungen Überlegungen zur sinnvollen Genauigkeit anstellen.

Arbeiten mit Variablen[Bearbeiten]

  • Sicherheit beim Arbeiten mit Variablen, Termen, Formeln und Gleichungen steigern,
  • Arbeiten mit einfachen Bruchtermen,
  • lineare Gleichungen mit zwei Variablen graphisch darstellen und Lösungen angeben können,
  • Verfahren zum Lösen von linearen Gleichungssystemen (zwei Gleichungen mit zwei Variablen) nutzenkönnen,
  • durch das Arbeiten mit funktionalen Abhängigkeiten einen intuitiven Funktionsbegriff erarbeiten.

Arbeiten mit Figuren und Körpern[Bearbeiten]

  • den Lehrsatz des Pythagoras für Berechnungen in ebenen Figuren und in Körpern nutzen können,
  • eine Begründung des Lehrsatzes des Pythagoras verstehen,
  • Berechnungsmöglichkeiten mit Variablen darstellen können;
  • Schranken für Umfang und Inhalt des Kreises angeben können,
  • Formeln für die Berechnung von Umfang und Flächeninhalt des Kreises wissen und anwenden können,
  • Formeln für die Länge eines Kreisbogens und für die Flächeninhalte von Kreisteilen herleiten und anwenden können;
  • Formeln für die Berechnung der Oberfläche und des Volumens von Drehzylindern und Drehkegeln sowie für die Kugel erarbeiten und nutzen können.

Arbeiten mit Modellen, Statistik[Bearbeiten]

  • Wachstums- und Abnahmeprozesse mit verschiedenen Annahmen unter Zuhilfenahme von elektronischen Rechenhilfsmitteln untersuchen können,
  • funktionale Abhängigkeiten untersuchen und darstellen;
  • Untersuchen und Darstellen von Datenmengen unter Verwendung statistischer Kennzahlen (zB. Mittelwert, Median, Quartil, relative Häufigkeit, Streudiagramm).

Grundrechnungen[Bearbeiten]

Punktrechnungen mit 10, 100, 1000 und so weiter[Bearbeiten]

  • Wenn man eine Zahl mit 10, 100, 1000 und so weiter multipliziert, dann verschiebt sich das Komma der Zahl einfach nach rechts (die Zahl wird größer), so oft, wie es Nullen gibt:
3,45 · 10 = 34,5    (Mal 10; in 10 gibt es eine Null, Komma wird einmal nach rechts verschoben)
54 · 10000 = 54,0000 · 10000 = 540000    (Mal 10000; in 10000 gibt es vier Nullen, Komma wird 4 Mal nach rechts verschoben; Allerdings gibt es kein Komma am Ende der Zahl 54; man schreibt ein Komma am Ende der Zahl und dazu nach dem Komma so viele Nullen, wie man will, und schiebt dann das Komma)
0,008 · 100 = 0,8    (Mal 100; in 100 gibt es 2 Nullen, Komma wird 2 Mal nach rechts verschoben)
  • Wenn man eine Zahl mit 10, 100, 1000 und so weiter dividiert, dann verschiebt sich das Komma der Zahl einfach nach links (die Zahl wird kleiner), so oft, wie es Nullen gibt:
3,45:10 = 0,345    (Durch 10; in 10 gibt es eine Null, Komma wird einmal nach links verschoben; allerdings gibt es links vor 3,4 keine Null, man schreibt also links von der Zahl so viele Nullen, wie man will, und schiebt dann das Komma)
54:10000 = 0,0054    (Durch 10000; in 10000 gibt es 4 Nullen, Komma wird 4 Mal nach links verschoben; allerdings gibt es links vor 54 kein Komma, man schreibt also links von der Zahl ein Komma und so viele Nullen, wie man will, und schiebt dann das Komma)
0,008:100 = 0,00008    (Durch 10; in 10 gibt es eine Null, Komma wird 1 Mal nach links verschoben; allerdings muss man zuerst am Ende der Kommazahl weitere Nullen schreiben)
900000:100 = 9000,00 = 9000    (Durch 100; in 100 gibt es 2 Nullen, Komma wird 2 Mal nach links verschoben; da es kein Komma am Ende der Zahl gibt, muss man erst das Komma schreiben)

Darstellungen einer Zahl im Dezimalssystem[Bearbeiten]

Textaufgaben zu den Grundrechenarten[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Mit den Grundrechenarten kann man auch Textaufgaben bilden. Bei diesen Aufgaben ist in der Regel die Bedeutung der Wörter nicht so wichtig, wie der Aufbau des Satzes:

  • Dividieren Sie die Differenz von 125 und 20 mit der Summe von 4 und 3.

Schauen wir mal, wie der Satz aufgebaut ist. Erst steht, dass man dividieren muss (also durch machen). Was muss man aber dividieren? Was steht nach dem Wort dividieren? Die Zahlen 125 und 20? NEIN! Nach dem Wort dividieren (durch machen) steht das Wort Differenz! Man muss also erst eine Differenz berechnen! Welche Differenz? Die Differenz von 125 und 20(was nach dem Wort Differenz steht)! Das steht ja auch da! Die Differenz (Minus) von 125 und 20 ist 125−20=105. Diese Differenz muss man durch irgendwas dividieren. Ist das durch 4, durch 3 oder doch was anderes? Doch was anderes! Die Differenz muss man mit der Summe (Plus machen) dividieren. Man muss also erst eine Summe berechnen, die Summe von 4 und 3 (was nach dem Wort Summe steht), 4+3=7. Man soll also die Differenz (105) durch die Summe (7) dividieren:

105:7=15. 15 ist also die Antwort zur Aufgabe!

Vorrang der Rechenarten[Bearbeiten]

Grundrechenartenvorrang[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Bei einer Rechnung muss die Reihenfolge der Rechnungen klar sein, sonst ist das Ergebnis nicht eindeutig:

:

  • Wenn man von links nach rechts liest, dann: also Ergebnis 7.
  • Wenn man von rechts nach links liest, dann: also Ergebnis 15.

Das Ergebnis ist nicht das Gleiche! In den meisten Sprachen der Welt fängt man links an. Dann ist das richtige (und eindeutige) Ergebnis 7. Nur bei Addition oder Multiplikation spielt die Leserichtung und allgemein die Reihenfolge keine Rolle:

In diesem Buch wird die Deutsche Leserichtung benutzt, also von links nach rechts.

Was ist, wenn man Strich- und Punktrechnungen gleichzeitig hat? Spielt hier die Reihenfolge wieder keiner Rolle, wie bei der Addition oder der Multiplikation?

Machen wir die Rechnung einfach von links nach rechts, ist das Ergebnis:

Ändern wir die Reihenfolge der Multiplikation:

und machen wir die Rechnung einfach von links nach rechts, bekommen wir ein anderes Ergebnis:

Es gilt auch:

  • Wenn man erst die Strichrechnung macht, ist das Ergebnis:
  • Wenn man erst die Punktrechnung macht, ist das Ergebnis:

Das Ergebnis ist wieder unterschiedlich.Ein unterschiedliches Ergebnis kommt auch dann vor, wenn die Reihenfolge bei der Addition geändert wird und die Multiplikation erst gemacht wird:

und

Hier haben wir die Reihenfolge bei der Addition geändert (einmal steht 2+3 und dann 3+2). Machen wir in beiden Fällen erst die Multiplikation:

und

Das Ergebnis ist wieder unterschiedlich. Wenn wir aber einen mathematischen Ausdruck haben, wollen wir ein eindeutiges Ergebnis. Damit das Ergebnis eindeutig ist, muss es eine Regel geben. In Mathematik haben die Punktrechnungen (mal und durch) immer Vorrang vor den Strichrechnungen (Plus und Minus). Man muss zuerst die Punktrechnungen machen und dann die Strichrechungen. Also ist hier 14 das richtige Ergebnis. Wenn es also in einer Rechnung Strich- und Punktrechnungen gibt, dann muss man zuerst die Punktrechnungen machen!

Wenn es aber eine Klammer gibt, dann muss man erst die Rechnung in der Klammer machen:

Hier ist das Ergebnis doch

...und hier ist das Ergebnis wieder .


Wenn in einem mathematischen Ausdruck mehrere Rechenarten vorkommen, dann muss eine Regel gelten, damit das Ergebnis eindeutig ist. Die grundlegende Regel lautet:

Klammer vor Punkt vor Strich.

(Zu Erinnerung: Punktrechnungen sind mal und durch, Strichrechnungen sind plus und minus)

Wenn es wiederum innerhalb einer Klammer mehrere Rechnungen gibt, dann muss man die Klammer erst machen und in der Klammer an die Regeln halten:

Unterstreichen wir zuerst die Rechnungen in den Klammern:

    In beiden Klammern muss man zuerst die Punktrechnung machen
    und dann die Strichrechnung in Klammer
    Man kann also die Klammer durch das jeweilige Ergebnis ersetzen
 
    Kompakter geschrieben ist die Rechnung jetzt:

Hier muss man erst die Punktrechnungen machen


Hier das Ganze noch einmal übersichtlicher und in einer Animation:

KvPvS1.jpg
KvPvS2.jpg
KvPvS3.jpg
KvPvS4.jpg
KvPvS5.jpg
KvPvS6.jpg
KvPvS7.jpg
Animation
Alle Schritte kompakt dargestellt:
   


Vorrang mit Klammern in Klammern[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Kein Video vorhanden daher zum Einleitungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
    In der großen Klammer hat die kleine Klammer Vorrang (Klammer vor Punkt vor Strich)
    In der kleinen Klammer erst Punkt und dann Strichrechnung
7   +               Kleine Klammer durch ihr Ergebnis in der großen Klammer ersetzen
   +               In den verbliebenen Klammern erst Punkt- und dann Strichrechnungen
          Man kann also die Klammer durch das jeweilige Ergebnis ersetzen

(an Plus-Minus Regeln halten!)

KvPvSB01.jpg
KvPvSB02.jpg
KvPvSB03.jpg
KvPvSB04.jpg
KvPvSB05.jpg
KvPvSB06.jpg
KvPvSB07.jpg
KvPvSB08.jpg
KvPvSB09.jpg
KvPvSB10.jpg
KvPvSB11.jpg
KvPvSB12.jpg
KvPvSB13.jpg

(an Plus-Minus Regeln halten!)

und die entsprechende Animation:

KvPvSB.gif

Bruchrechnungen[Bearbeiten]

Doppelbrüche[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Ein Doppelbruch ist wie die Division zwischen zwei Brüchen. Der Bruch oben wird durch den Bruch unten dividiert, also mit dem Kehrwert des Bruches unten multipliziert:

Bruchrechnungen und Vorrang[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Bei Kombinationen von Bruchrechnungen muss man auf der Reihenfolge (siehe Vorrang der Rechenarten) aufpassen:


Man muss zuerst die Klammern machen:

  • Erste Klammer

   Hier haben wir nur eine Strichrechnung und zwar mit dem gleichen Nenner.


  • Zweite Klammer

      Hier müssen wir erst die Punktrechnung machen und dann die Strichrechnung.

      Hier soll man erst kürzen.

     



Jetzt kann man in der Rechnung die Ergebnisse für die Klammern einsetzen:

Textaufgaben zu den Bruchrechnungen[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Die Textaufgaben mit Bruchrechnungen werden i.d.R. leicht in die mathematische Sprache umgewandelt:

In einem Staat mit 8,46 Millionen Einwohner trinkt jeder Einwohner durchschnittlich vier Neuntel Liter Milch täglich.
    1. Wie viel Liter werden dann täglich konsumiert?
    2. Der Gewinn für die Eigentümer ist 0,8¢/Liter Milch. Wie viel ist der tägliche Gewinn? Finden Sie ihn gerechtfertigt?
  1. Im einem anderen Staat gibt es 4 Supermarktketten. Zusammen gewinnen die Eigentümer 105000€ täglich. Eigentümer A bekommt zwei Fünftel des Gewinns, Eigentümer B ein Drittel und den Rest teilen die anderen zwei Eigentümer C und D. Wie viel gewinnt täglich jeder Eigentümer? Finden Sie den Gewinn gerechtfertigt?

Aufgabe a lässt sich leicht berechnen:

Da der Gewinn pro Liter 0,8¢ ist, soll man 0,8 mit 3,76 Mil. multiplizieren (dann hat man ¢) und dann durch 100 dividieren (dann hat man €):

Ob dieser Gewinn gerechtfertigt ist, soll jeder für sich entscheiden (die Eigentümer werden ihn sicherlich gerechtfertigt finden, sonst würden sie ihn nicht machen...).

Aufgabe b ist ebenfalls nicht besonders schwer:

Eigentümer A:

Eigentümer B:

Eigentümer C und D teilen den Rest:

Primfaktorzerlegung Anwendungen[Bearbeiten]

Kürzen mit Primfaktorzerlegung[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Wir haben schon das Kürzen von Brüchen gesehen:

Hier sieht man sofort, dass man sowohl den Zähler als auch den Nenner durch 5 teilen kann. Was ist aber, wenn man große Zahlen hat. In diesem Fall ist es besser, die PFZ der Zahlen erst durchzuführen:

 
?
6664     2
3332     2
1666     2
833     7
119     7
17     17
1   
8820     2
4410     2
2205     3
735     3
245     5
49     7
7     7
1   
Man schreibt Zähler und Nenner als
Produkt von Primzahlen und kürzt
den Bruch (also Primzahlen, die oben
und unten vorkommen, werden gestrichen)
 

Textaufgaben Primfaktorzerlegung[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Kein Video vorhanden daher zum Einleitungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
BAUSTELLE
Hier entsteht ein
neues Unterkapitel

Entferne die Vorlage mit den folgenden Erstellen- bzw. Korrigierenlinks nur wenn du mit allen (samt Theorieteil) fertig bist!

Schau auch, ob dieses Unterkapitel an der richtigen Stelle im richtigen Kapitel entstanden ist!


Neue Aufgabensammlung erstellen: Mathematrix:_Aufgabensammlung/_Textaufgaben Primfaktorzerlegung
Aufgabensammlung Zentralseite korrigieren!
CopyPaste Seite korrigieren!
Linksseite korrigieren!
Externe-Links-Seite korrigieren!
Neues Aufgabenbeispiel erstellen: Mathematrix: Aufgabenbeispiele/_Textaufgaben Primfaktorzerlegung
Aufgabenbeispiele Zentralseite korrigieren!
BackUp Beispiele und Aufgabensammlung korrigieren
Neuen Abschnitt zum entsprechenden Antwort-Kapitel hinzufügen:


Hier fängst du mit der Theorie des neuen Unterkapitels an!

Bruchstrichrechnungen mit Primfaktorzerlegung[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Wir haben schon gesehen, wie man zwei Brüche addiert oder subtrahiert. Was ist aber, wenn man mehrere Brüche hat? Man könnte selbstverständlich erst die zwei Brüche machen, das Ergebnis mit dem nächsten Bruch usw., es gibt aber in diesem Fall eine Methode, die schneller ist und die PFZ benutzt: Hier macht man zuerst die PFZ der Nenner:

       Hier macht man zuerst die PFZ der Nenner:

120     2
60     2
30     2
15     3
5     5
1   
36     2
18     2
9     3
3     3
1   
300     2
150     2
75     3
25     5
5     5
1   
120 = 2·2·2·3·5     Hier kommt 2 drei mal vor
36 = 2·2·3·3     Hier kommt 2 zwei mal vor
300 = 2·2·3·5·5     Hier kommt 2 zwei mal vor
 Am häufigsten kommt die 2 drei mal vor
kgV=2·2·2·3·3·5·5     Also müssen wir 2 in kgV drei mal
benutzen. Das gleiche passiert mit 3 und 5.
(kgV bedeutet kleinstes gemeinsames Vielfaches)    

Das kgV wird der neue gemeinsamer Nenner sein. Das bedeutet wir müssen alle drei Brüche erweitern. Im ersten Bruch () ist der Nenner 120 und muss auf 1800 erweitert werden. Mit welcher Zahl muss man 120 multiplizieren um 1800 zu bekommen? Um das zu finden, dividiert man 1800 durch 120 1800:120=15. Mit dieser Zahl (15) muss man den Nenner (120) multiplizieren. Damit aber der Bruch gleich bleibt, muss man auch den Zähler mit 15 multiplizieren. Den gleichen Prozess wiederholt man bei den anderen Brüchen:




Das ist der beste Weg um mehrere ungleichnamige Brüche zu addieren oder subtrahieren.

Teilbarkeit[Bearbeiten]

Für die Teilbarkeit durch 11 gibt es eine Regel: wenn die Differenz der alternierenden Summe der Ziffer einer Zahl 0 oder durch 11 teilbar ist, dann ist die Zahl auch durch 11 teilbar. Beispiel: 981607. Man nimmt die Summe der ersten, der dritten und der fünften (alternierend) Ziffer 9+1+0= 10 und die Summe der zweiten, der vierten und der sechsten (alternierend) Ziffer 8+6+7=21. Die Differenz der beiden Summen ist 21-10=11, was durch 11 teilbar ist. Daher ist auch 981607 durch 11 teilbar!


Binäre Zahlen[Bearbeiten]

BAUSTELLE
Hier entsteht ein
neues Unterkapitel

Entferne die Vorlage mit den folgenden Erstellen- bzw. Korrigierenlinks nur wenn du mit allen (samt Theorieteil) fertig bist!

Schau auch, ob dieses Unterkapitel an der richtigen Stelle im richtigen Kapitel entstanden ist!


Neue Aufgabensammlung erstellen: Mathematrix:_Aufgabensammlung/_Binäre Zahlen
Aufgabensammlung Zentralseite korrigieren!
CopyPaste Seite korrigieren!
Linksseite korrigieren!
Externe-Links-Seite korrigieren!
Neues Aufgabenbeispiel erstellen: Mathematrix: Aufgabenbeispiele/_Binäre Zahlen
Aufgabenbeispiele Zentralseite korrigieren!
BackUp Beispiele und Aufgabensammlung korrigieren
Neuen Abschnitt zum entsprechenden Antwort-Kapitel hinzufügen:


Hier fängst du mit der Theorie des neuen Unterkapitels an!

Schluss und Prozentrechnung[Bearbeiten]

Schlussrechnung (Dreisatz)[Bearbeiten]

Direkte Proportionalität[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Fangen wir direkt mit einem Beispiel an.

  • 5 Tische kosten 315€. Wie viel kosten 2 Tische?

Hier spricht man von einer sogenannten direkte Proportionalität. Weniger Tische werden weniger Geld kosten. Das Beispiel besteht aus zwei Sätze:

was gegeben ist: „5 Tische kosten 315€“. Diese Daten schreibt man auf ein Zeile nebeneinander. Man schreibt also am Anfang:
5 Tische ... 315€
was gefragt ist: „Wie viel kosten 2 Tische?“ Hier ist der Preis der Tische in € gefragt. Man schreibt eine zweite Zeile unter die erste: Dabei schreiben wir das Gefragte (Preis der Tische) als x und die Anzahl der Tische unter der Anzahl Tische von der ersten Zeile:
5 Tische ... 315€
2 Tische ... x


Man fängt mit der gefragten Größe an (hier €), also mit der Zahl, die an der gleichen
Spalte mit x steht, und multipliziert diese Zahl mit der Zahl schräg gegenüber.

315·2=630.

Das Ergebnis dividiert man mit der verbliebenden Zahl (hier 5).

630:5=126

Jetzt kommt die Frage: 126 was? Was haben wir hier gerechnet? Sicherlich nicht Frösche und auch nicht Äpfel. Wie kann man herausfinden, was hier gerechnet wurde? Eine Möglichkeit ist es, die folgende Frage zu stellen: „Wieviel kosten 2 Tische?“ Kosten sind gefragt, also €. Das Ergebnis ist daher der Wert in €. Ein anderer Weg ist es darauf zu schauen, wo x steht: Es steht unterhalb von „315€“. Wir haben gesagt, dass in jeder Spalte die Sachen (in Mathematik „Einheiten“ genannt) übereinstimmen müssen. Unterhalb von € müssen € stehen. Daher sollte die Einheit von x auch € sein. Somit ist die Antwort:

„Zwei Tische kosten 126€.“


Der ganze Prozess noch einmal Schritt für Schritt:

Schluss1.jpg
Schluss2.jpg
Schluss3.jpg
Schluss4.jpg
Schluss5.jpg
Schluss6.jpg
Schluss7.jpg
Schluss8.jpg

und die entsprechende Animation:

Schluss.gif

Noch ein Beispiel:

3,5 Liter eines Stoffes wiegen 14,7 kg.

a) Wie viel wiegen 0,0175 Liter?
b) Wie viel Liter sind 3850kg?


Hier gibt es zwei Fragen, das gegebene ist aber in beiden Fällen das gleiche, nämlich der erste Satz.

a) Für die erste Frage schreiben wir das gegebene an einer Zeile und das gefragte darunter (gleiche Sachen unter gleichem):

     

Die Zahl, die an der gleichen
Spalte mit x steht, mal die Zahl schräg
gegenüber und durch die andere Zahl
:
  

Noch einmal stellt sich die Frage: 0,735 was? Was haben wir hier gerechnet? Wieso haben wir kg geschrieben? Die Frage war „Wie viel wiegen 0,0175 Liter?“ Also muss die Einheit vom Ergebnis kg sein. Wenn wir die Schlussrechnung betrachten, sehen wir ebenfalls, dass x unterhalb von „14,7 kg“ steht. In einer Spalte müssen die Einheiten übereinstimmen, unterhalb von kg müssen gleichfalls kg stehen. Somit ist die Antwort:

„0,0175 Liter des Stoffes wiegen 0,735kg.“


b) Für die zweite Frage schreiben wir wieder das gegebene in einer Zeile und das gefragte darunter (gleiche Sachen (Einheiten) unter gleiche):

     

Ob man die Liter links oder rechts schreibt oder das gegebene oben oder unten, spielt keiner Rolle. Wichtig ist: das Gegebene in einer Zeil und gleiche Sachen (Einheiten) in der gleichen Spalte!

     

In diesen Aufgaben ist es wichtig zu verstehen: Man braucht nicht wissen, was die Wörter bedeuten! Man soll einfach die Struktur der Sätze der Aufgabe verstehen!

Indirekte Proportionalität[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

In der direkten Proportionalität haben wir gesehen, wie man vorgeht, wenn zwei Größen gleichzeitig größer oder kleiner werden. Wenn man mehr von einer Ware kaufen will, dann muss man auch mehr bezahlen. Wenn man weniger kaufen will, dann zahlt man auch weniger. Wenn man mehr kg von einem Stoff hat, dann hat man auch mehr Liter des Stoffes. Es gibt aber auch Fälle, bei denen die Erhöhung einer Größe die Verminderung einer anderen bedeutet:

  • 3 Arbeiter brauchen 15 Stunden, um ein Haus mit Fliesen zu verlegen. Wie viel Zeit brauchen dann 5 Arbeiter?

1 Arbeiter würde in diesem Fall mehr Zeit brauchen. Es gibt für einen Arbeiter viel mehr Boden zu verlegen, wenn er alleine arbeitet. Also weniger Arbeiter brauchen mehr Zeit. Das ist also KEINE direkte sondern eine indirekte Proportionalität.

Wie bei der direkten Proportionalität schreibt man hier auch die gegebenen Größen nebeneinander und gleiche Größen untereinander.

In diesem Fall multipliziert man mit der Zahl gerade gegenüber (und NICHT schräg gegenüber, wie in der direkten Proportionalität) und dividiert dann durch die andere Zahl:

        (die die Arbeiter in diesem Fall brauchen).

Um zu unterscheiden, ob man eine direkte oder indirekte Proportionalität hat, muss man schon die Sprache und die Zusammenhänge gut verstehen können!

Vergleich direkter und indirekter Proportionalität[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Wie wir in den vorherigen Absätzen gesehen haben, muss man sowohl bei der direkten als auch bei der indirekten Proportionalität die Daten, die (in der Regel in einem Satz) in Verbindung gebracht werden, in einer Zeile nebeneinander schreiben (hier bei der direkten Proportionalität 3,5 Liter und 14,7 kg und bei der indirekten 3 Arbeiter und 15 Stunden) und dafür sorgen, dass in jeder Spalte die gleichen Einheiten geschrieben werden.

                                           

Bei beiden Vorgängen fängt man dann mit der Zahl an, die nur an der gleichen Spalte mit x steht (hier 14,7 kg in der direkten und 15 Stunden in der indirekten Proporionalität). Der Unterschied ist: bei der direkten Proportionalität geht man dann schräg, bei der indirekten gerade gegenüber, und multiplitiert mit dieser Zahl (hier 0,0175 Liter in der direkten und 3 Arbeiter in der indirekten Proporionalität). Am Ende dividiert man in beiden Fällen mit der übriggebliebenen Zahl (hier 3,5 Liter in der direkten und 5 Arbeiter in der indirekten Proporionalität).

                                           

Wie kann man verstehen, ob eine direkte oder eine indirekte Proportionalität vorliegt?

Nehmen wir den folgenden Bruch b:  ,  wobei z der Zähler und n der Nenner ist. Wenn z=20 und n=5 ist, dann ist der Bruch b=4: . Wenn jetzt der Zähler z größer wird (z.B. z=30), dann wird der ganze Bruch b auch größer:  . Wenn der Zählerz kleiner wird (z.B. z=10), dann wird der ganze Bruch auch kleiner:  . Je größer der Zähler, desto größer der Bruch. Je kleiner der Zähler, desto kleiner der Bruch. Diesen Zusammenhang nennt man direkte Proportionalität.

Wenn jetzt der Nenner größer wird (z.B. n=10), dann wird der ganze Bruch das Gegenteil, also kleiner:

Wenn der Zähler z=20 und und der Nenner n=5 ist, dann ist der Bruch b=4: . Wird der Nenner n größer, z.B. 10, dann wird der Bruch b kleiner:  . Wenn der Nenner kleiner wird (z.B. n=2), dann wird der ganze Bruch das Gegenteil, also größer:  . Je größer der Nenner, desto kleiner der Bruch. Je kleiner der Nenner, desto größer der Bruch. Diesen Zusammenhang nennt man indirekte Proportionalität.

Wenn zwei Größen (z.B. Volumen und grob gesagt Gewicht[1]) gleichzeitig wachsen oder gleichzeitig weniger werden, dann liegt eine direkte Proportionalität vor (z.B. wenn man mehr Wasser hat, ist sowohl das Volumen als auch das Gewicht mehr). Wenn der Wachstum einer Größe zur Verminderung einer anderen führt, dann liegt eine indirekte Proportionalität vor (z.B. mehr Arbeiter brauchen weniger Zeit, um die gleiche Arbeit zu erledigen). So kann man verstehen, ob man direkte oder indirekte Proportionalität benutzen soll. Beim nächsten Kapitel allerdings (Prozentrechnung) kommt nur die direkte Proportionalität vor!

  1. in der Physik soll man Masse sagen

Prozentrechnung[Bearbeiten]

Prozentrechnung allgemein[Bearbeiten]

Prozentrechung Begriffe[Bearbeiten]

Das Wort „Prozent“ kommt aus dem lateinischen und bedeutet pro Hundert. Ein Prozent IST ein Hundertstel.

In diesem Sinn ist z.B.:

Bei Aufgaben, die mit Prozentrechnung zu tun haben, ist der Wert am Anfang immer 100%.

100% ist gleich 1, also das „Ganze“:

100%=1

Diesen Anfangswert nennt man Grundwert. Es gibt dazu auch den Prozentwert (oder Prozentanteil) und den Prozentsatz. Um zu verstehen, was die Begriffe bedeuten, nehmen wir folgendes Beispiel:

Wie viel % von 55 Personen sind 11 Personen?

Wir wollen einen Teil von den 55 Personen in Prozent (in Hundertstel) berechnen. Dieser Teil sind die 11 Personen. Die 11 Personen sind der Prozentanteil oder Prozentwert.

Das Ganze (100%, Anfangswert) sind die 55 Personen. Der Grundwert ist "55 Personen".

Herauszufinden welcher Wert der Grundwert ist, ist in der Prozentrechnung eine entscheidende Aufgabe. Um den Grundwert im Satz zu erkennen, schaut man in der Regel, welches Wort im Genitiv steht. Wenn man sagt "des Gewichts", "der Bevölkerung", "von 55 Personen", dann sind diese Ausdrücke der Grundwert (100%). Der andere Wert ist der Prozentanteil.

Es kann aber sein, dass kein Wort in der Aufgabe im Genitiv steht, sondern, dass eine zeitliche Reihenfolge vorkommt. Wenn nichts anderes angegeben wird, ist der Wert in der früheren Zeit der Wert am Anfang, der Grundwert (100%). Beispielsweise, wenn ein Baum wächst, ist der Wert am zeitlichen Anfang der Grundwert, der Prozentwert kann dann variieren, je nachdem was gefragt ist: Er kann die Höhe am Ende sein oder der Höhenunterschied.

Wenn beides vorkommt (zeitliche Folge und Genitiv), dann ist der Genitiv der Grundwert. Im Beispiel mit dem Baum kann gefragt werden, wie viel Prozent der Höhe am Ende die Höhe am Anfang ist. In diesem Fall ist die Höhe am Ende der Anfangswert (Genitiv ist "stärker" als die zeitliche Reihenfolge).

Der Prozentsatz beschreibt, wie viele Hundertstel des Ganzen der Prozentanteil ist. In unserem Beispiel:

Grundaufgaben der Prozentrechnung[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Nicht vergessen: Der Wert am Anfang (das „Ganze“) ist immer 100%
  • Wie viel % von 55 Personen sind 11 Personen?

Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier ist der Prozentsatz eines Teils von 55 Personen gefragt. 55 Personen sind 100%. (Nach dem Wort „von“ steht der Wert, der 100% ist). Wir schreiben das so auf, wie wir es in der Schlussrechnung (genauer in der direkten Proportionalität) gelernt haben:

      .

  • Wie viele Personen sind 11% von 55 Personen?

Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier ist ein Prozentsatz von 55 Personen gefragt, also haben wir am Anfang 55 Personen, die dann 100% sind! (Also nach dem Wort „von“ steht der Wert, der 100% ist). Wir schreiben das auf, wie wir es in der Schlussrechnung (genauer in der direkten Proportionalität) gelernt haben:

      .

  • Wie viel % von 23 kg sind 5329kg?

Hier steht nach „von“ 23 kg, also sind 23kg 100%

      .

  • Wie viel ist 0,3% von 0,26 Liter?

      .


  • Von wie vielen Personen sind 55 Personen 11%?

Hier steht nach dem Wort „von“ eine Frage. Das Gefragte schreibt man in der Mathematik mit x. Daher ist x 100%. Das Gefragte ist 100%.

      .

Prozentrechnung bei Wachstum oder Zerfall[Bearbeiten]
Umkehraufgaben der Prozentrechnung[Bearbeiten]
  • Man hat in seinem Haus ein neues Zimmer aufgebaut. Die Fläche des Hauses ist dadurch um 15% auf 112,7m² gewachsen. Berechnen Sie die ursprüngliche Fläche!

Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier wissen wir nicht, wie groß das Haus am Anfang war, das ist doch gefragt! Das gefragte schreibt man in Mathematik mit x. 100% ist also x. Das Haus ist um 15% gewachsen, also die Fläche am Ende (112,7m²) ist 100%+15%=115%. Daher sind 112,7m² 115%.

Schreiben wir diese Information auf, wie wir das gelernt haben:

      .


  • Ein Tisch wurde um 10% geschnitten. Die neue Länge ist 2,7m. Berechnen Sie die ursprüngliche Länge!

Der Wert am Anfang (das „Ganze“) ist immer 100%. Er ist aber nicht gegeben. Daher ist x 100%. Der Tisch wurde um 10% geschnitten, war am Anfang 100%, daher bleibt noch 100%-10%=90%. 2,7m (der Wert am Ende) sind daher 90%. Schreiben wir das Ganze auf:

      .

Erklärung der Prozent und Schlussrechnung[Bearbeiten]

Wie schon betont, bedeutet "ein Prozent" das gleiche wie ein Hundertstel. Ein Hundertstel ist ein Bruch.Für die Erklärung der Prozentrechnung kann man daher die Bruchrechnung benutzen, genauer gesagt das Erweitern von Brüchen.

Wenn wir wissen wollen, wie viel Prozent von 5kg 3kg sind, können wir mit der Darstellung von 5kg anfangen:

Funf1.svg

Drei kg kann man dann als Bruchteil von diesen 5kg darstellen, wie im folgenden Bild:

Funf2.svg

Wenn jemand das Ganze senkrecht auf 20 teilt, ist jeder kleiner Teil ein Hundertstel. Im Bild kann man schon sehen, dass die drei fünftel solche kleine Teile sind, also 60 Hundertstel, also 60%:

Funf3.svg

Wenn wir jetzt mit Brüchen arbeiten, können wir durch die Bilder leicht verstehen, dass wir den Bruch mit der Zahl 20 erweitert haben:

Wie sind wir auf die Zahl 20 gekommen? Wir haben einfach 100 durch 5 dividiert, also durch die Zahl, die den Wert des Ganzen darstellt. Wieso ist 5 das Ganze? Wir haben schon in den Definitionen gesagt, dass das Ganze nach dem Wort "von" steht, also hier die 5 kg. So wie wir die Prozentrechnung gelernt haben, bedeutet das, dass man mit der Zahl quer gegenüber multiplizieren muss und durch die andere Zahl dividieren:

         

3 kg sind daher 60% (also 60 Hundertstel) von 5 kg.

Schauen wir jetzt ein Beispiel mit Zahlen, die nicht so "rund" sind:

Wie viel Prozent von 17 Äpfel sind 230 Äpfel?

Hier ist das Ganze die 17 Äpfel, also was nach dem Wort "von" (also in Genitiv) steht. Welcher Anteil von 17 Äpfel sind 230 Äpfel?

Diesen Bruch müssen wir so erweitern, damit im Nenner am Ende 100 steht:

Der Nenner hier wird tatsächlich 100 sein (es gilt: ). Somit haben wir:

da hundertstel genau Prozent bedeutet.

Wir haben in diesem Fall tatsächlich die Prozentrechnung mit Hilfe der Schlussrechnung durchgeführt, so wie wir das gelernt haben:

        

230 Äpfel sind daher ca. 1352,94% von 17 Äpfel.


Was ist, wenn man 17% von 35 Stunden berechnen will?

17% bedeutet 17 Hundertstel. Wir müssen 35 Mal die 17 Hundertstel nehmen. Anders gesagt teilen wir die 35 Stunden in Hundert Teile und nehmen 17 davon:

17% von 35 Stunden sind daher 5,95 Stunden.

Das ist wieder genauso, wie wir den Prozess mit Schlussrechnung gelernt haben:

        

Ähnlich denkt man bei der Schlussrechnung (genauer: bei der direkten Proportionalität). Nehmen wir folgendes Beispiel:

3,5 Liter eines Stoffes wiegen 14,7 kg.

a) Wie viel wiegen 175 Liter?
b) Wie viel Liter sind 3850kg?

Für die erste Frage denkt man erst, wie viel ein Liter wiegt. Man soll also 14,7 kg durch 3,5 dividieren, um zu finden, wie viel jedes Liter wiegt. Das ist als ob man eine Schokolade hätte und wissen wollte, wie viel jedes Teil wiegt.

4,2 kg wiegt jedes Liter des Stoffes.

175 Liter wiegen dann 735 kg:

Als Schlussrechnung:

        



In der zweiten Frage muss man erst finden, wie viel Volumen ein kg hat:

Ca. 0,238 Liter ist jedes kg des Stoffes.

Das Volumen von 3850 kg ist dann ca. 917 Liter:


Nochmal als Schlussrechnung:

        



Bei der indirekten Prportionalität muss man ein bisschen anderes denken:

  • 3 Arbeiter brauchen 15 Stunden, um ein Haus mit Fliesen zu verlegen. Wie viel Zeit brauchen dann 5 Arbeiter?

1 Arbeiter würde in diesem Fall mehr Zeit brauchen. Es gibt für einen Arbeiter viel mehr Boden zu verlegen, wenn er alleine arbeitet. Also weniger Arbeiter brauchen mehr Zeit. Wie wir schon im entsprechenden Kapitel erklärt haben, ist das keine direkte sondern eine indirekte Proportionalität. Man muss in diesem Fall herausfinden, wie viel Zeit ein Arbeiter braucht. Ein Arbeiter wird die Arbeit von allen anderen erledigen müssen und jede der 3 Arbeiter braucht 15 Stunden. Einer Arbeiter braucht daher 45 Stunden:

Wenn jetzt diese Arbeit auf 5 Arbeiter aufgeteilt wird, wird jeder ein fünftel der Arbeit erledigen müssen. Wenn alle zusammen arbeiten, dann wird die Arbeit 9 Stunden dauern:

In diesem Fall muss man also direkt gegenüber multiplizieren, wie wir das gelernt haben:

      

Kombinationsaufgaben der Prozentrechnung[Bearbeiten]

  • Die Produzenten eines Filmes hatten vor dem Schnitt 5 Stunden Material. Beim ersten Schnitt haben Sie 70% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 20% länger (als der geschnittene Film) Version gemacht. Berechnen Sie die Dauer der letzten Version!

Der Wert ganz am Anfang (100%) ist hier gegeben (5 Stunden). Das wurde um 70% geschnitten, es bleiben also 100-70=30%. Schreiben wir diese Information auf:

        Stunden.

Der Film war dann den Produzenten doch zu kurz. Diesen geschnittenen Film (also die 1,5 Stunden) haben sie dann um 20% verlängern. Diese 1,5 Stunden sind daher der neue Anfangswert, also 100%! Der Wert am Ende ist daher 100+20=120% von 1,5 Stunden (vom geschnittenen Film):

        Stunden.


Zur Aufgabensammlung Weitere Links und Videos

Zum Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
  • Die Produzenten eines Filmes hatten vor dem Schnitt zu viel Material. Beim ersten Schnitt haben Sie 80% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 15% längere (als der geschnittene Film) Version gemacht. Die letzte Version dauert 1,61 Stunden. Berechnen Sie die ursprüngliche Dauer, also die Dauer des ungeschnittenen Films!

Das hier ist eine Kombination von zwei Umkehraufgaben. Die letzte Version dauert 1,61 Stunden. Sie ist um 15% länger als die erste geschnittene Version. In diesem Fall haben wir am Anfang die geschnittene Version, diese ist also 100% und wurde um 15% auf 1,61 Stunden verlängert. 1,61 Stunden sind daher 115%, der Wert am Anfang (100%) ist noch unbekannt:

        Stunden.

Der Schnitt ist 1,4 Stunden nachdem er geschnitten wurde. Die Dauer am Anfang (100%), vor dem Schnitt, ist noch unbekannt. 80% wurden geschnitten, also 100-80=20% sind nach dem Schnitt geblieben. Nach dem Schnitt (80%) war der Film 1,4 Stunden:

        Stunden.

Das Filmmaterial am Anfang (die ursprüngliche Dauer) war daher 7 Stunden!

Prozentrechnung für Fortgeschrittene[Bearbeiten]

Es gibt einen viel schnelleren Weg um Aufgaben mit Prozentrechnung zu lösen. Nehmen wir die zwei Aufgaben aus dem letzten Kapitel.

  • Die Produzenten eines Filmes hatten vor dem Schnitt 5 Stunden Material. Beim ersten Schnitt haben Sie 70% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 20% längere (als der geschnittene Film) Version gemacht. Berechnen Sie die Dauer der letzten Version!

Die Dauer nach dem Schnitt ist 100%-70%=30%. Wie am Anfang des Kapitels über Prozentrechnung erwähnt, 30% ist 0,3 ().

Wenn der Anfangswert gegeben ist, muss man mit dem Prozentsatz (als Zahl, also nicht 30, was %, also Hundertstel, ist, sondern 0,3) multiplizieren:

5·0,3=1,5 (Stunden).

Den nächsten Schritt kann man genauso machen. Nach 20% Erhöhung (aufpassen: des geschnittenen Films) haben wir .

1,5·1,2=1,8 (Stunden).

Das ganze kann man sogar in einem Schritt berechnen:

5·0,3·1,2=1,8 (Stunden).


Betrachten wir noch einmal den ersten Schritt. Wir wollen wissen, wie viele Stunden 30% von 5 Stunden sind. 30% bedeutet . Man soll daher die 5 Stunden in 100 teilen und 30 Teile davon nehmen:

(Stunden)

Der Anfangswert (Grundwert) wird daher mit 0,3 multipliziert.

Das kann man auch feststellen, wenn man die Schlussrechnung wie bisher gelernt durchführt:

      .


Aber 1,5 in der letzten Rechnung ist so viel wie 5·0,3, wie man in der ersten Rechnung sehen kann. Daher kann man in der letzten Berechnung schreiben:

Die Schlussrechnungen können durch eine einfache und schnelle Multiplikation ersetzt werden!


In der Umkehraufgabe soll man die Gegenrechnung der Multiplikation benutzen, also die Division.

  • Die Produzenten eines Filmes hatten vor dem Schnitt zu viel Material. Beim ersten Schnitt haben Sie 80% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 15% längere (als der geschnittene Film) Version gemacht. Die letzte Version dauert 1,61 Stunden. Berechnen Sie die ursprüngliche Dauer, also die Dauer des ungeschnittenen Films!

1,61:1,15:0,2=7 (Stunden)

Schon fertig!

Man kann auch so denken:

x⋅0,2⋅1,15=1,61         |:1,15:0,2

x=1,61:1,15:0,2=7 (Stunden)

Wenn der Wert am Ende (der Prozentanteil) gegeben ist, muss man durch den Prozentsatz (als Zahl) dividieren.

Umsatzsteuer (USt.) und Rabatt[Bearbeiten]

Umsatzsteuer (USt.)[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Denken wir an eine Flasche Wasser. Der Produzent verkauft sie dem Supermarkt für einen Preis von, sagen wir mal, 2€ und der Supermarkt will dazu 1,2€ gewinnen. Um wie viel Geld wird dann das Produkt verkauft? Man könnte denken: 2+1,2=3,2€. Das ist aber doch nicht alles. Der Staat verlangt für jedes verkauftes Gut und für jede verkaufte Leistung Steuer. Diese Steuer nennt man Umsatzsteuer (USt.). Die USt. ist in Deutschland für Grundgüter 7% und für den Rest 19%, in Österreich 10% für Grundgüter und 20% für den Rest. In anderen Staaten gibt es andere Steuersätze (5%, 13% usw.). Diese Steuer wird vom Einkäufer bezahlt und ist daher Teil des Preises. Die Flasche Wasser wird daher nicht für 3,2€ verkauft, sondern um 10% mehr (ein Getränk ist ein grundlegendes Gut, also ist die USt. 10%).

      .

       
Nettoverkaufspreis (NVP) (100%) USt.
Bruttoverkaufspreis (BVP)


Die Ware wird also um 3,52€ verkauft. Diesen Preis nennt man Bruttoverkaufspreis (BVP). Die 3,2€ (den Preis ohne Steuer) nennt man Nettoverkaufspreis (NVP). Die USt. in dieser Aufgabe ist 10% des Nettoverkaufspreises:

      .

Es gilt offenbar, sowohl was dem Preis als auch was dem Prozentsatz betrifft:

BVP=NVP + USt.
      (in diesem Beispiel: 3,52=3,2+0,32 und 110%=100%+10%)
Rabatt[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Aus verschiedenen Gründen (z.B. wenn eine Ware nicht so leicht verkauft wird oder am Ende einer Saison) kann ein Verkäufer eine Ware billiger als für den gewöhnlichen Preis verkaufen. Das nennt man Rabatt[1] (oder Skonto). Im vorherigen Beispiel kann der Supermarkt die Flasche Getränk um 6% billiger verkaufen. Der Preis vor dem Rabatt ist in diesem Fall 3,52€ (Wert am Anfang, 100%). Nach dem Rabatt bleibt noch 100-6=94%:

      .

       
Preis vor Rabatt (PVR) (100%)
Preis nach Rabatt (PNR) Rabatt (R)

Der Rabatt in diesem Fall ist 6% des Preises vor dem Rabatt:

      .

Es gilt offenbar, sowohl was dem Preis als auch was dem Prozentsatz betrifft:

PNR=PVR-R
      (in diesem Beispiel: 3,31=3,52-0,21 und 94%=100%−6%)
  1. Hier wird der Rabatt auf den Listenpreis für den Endkunden berechnet, der die USt. enthält. Anfangswert wird daher bei den folgenden Berechnungen der Bruttoverkaufspreis sein. In der Schulmathematik wird i.d.R. Rabatt genau so definiert. Das ist allerdings nicht immer der Fall bei der kaufmännischen Mathematik.
USt. und Rabatt Gegebener Anfangswert[Bearbeiten]
  • Der Nettoverkaufspreis einer Ware ist 65€. Berechnen Sie den Verkaufspreis nach einem 12% Rabatt, wenn die USt. 12% ist.

Die Aufgabe kann man in zwei Schritten lösen. Erst den Bruttoverkaufspreis berechnen (Der Bruttoverkaufspreis, also der Preis nach USt. ist 12% mehr also 100+12=112%):

        Das ist der Bruttoverkaufspreis.

Dann kann man den Preis nach dem Rabatt berechnen. Der Preis nach dem Rabatt wird 12% weniger sein, also 100%-12%=88%.

        Das ist der Preis nach dem Rabatt (PNR).

VORSICHT:

Wenn man Brutto- (BVP) und Nettoverkaufspreis (NVP) vergleicht (und USt. berechnet) ist nicht der Brutto- sondern der Nettoverkaufspreis der Grundwert (100%)

Wenn man aber Bruttoverkaufspreis (BVP) und Preis nach Rabatt (PNR) vergleicht, ist der Bruttoverkaufspreis doch der Grundwert (100%):

Bemerkung Erhöhen und Reduzieren um den gleichen Prozentsatz[Bearbeiten]

Wie man in der letzten Aufgabe feststellen kann, wenn man den Preis um 12% erhöht und dann wieder um 12% vermindert, ist der Preis am Ende nicht gleich dem Preis am Anfang! Warum passiert das? Weil wir zwei unterschiedlichen Anfangswerte haben! Erst haben wir den Nettoverkaufspreis als Anfangswert (100%) und den Bruttoverkaufspreis als Endwert (112%). Dann ist aber der Bruttoverkaufspreis der Anfangswert (100% und nicht mehr 112%) und der Endwert der Preis nach dem Rabatt (88%).

Das ganze kann man auch wieder in einem Schritt berechnen:

65€·1,12·0,88≈64,06€ !

Man muss also immer aufpassen, welcher der Anfangswert ist!

USt. und Rabatt Gegebener Endwert[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
  • Der Verkaufspreis einer Ware nach 15% Rabatt ist 56,1€. Berechnen Sie den Nettoverkaufspreis , wenn die USt. 10% ist.

Der Preis nach dem Rabatt (56,1€) ist 100%-15%=85%. Vor dem Rabatt (100%) ist er daher:

Das ist der Bruttoverkaufspreis.

Der Bruttoverkaufspreis nach 10% USt. ist 66€. Das ist also 110%. Der Nettoverkaufspreis (Anfangswert) ist 100% und gesucht!

Das ist der Nettoverkaufspreis.

Das ganze kann man selbstverständlich auch in einem Schritt berechnen:

56,1€:0,85:1,1=60€

Warum gibt es Steuer?[Bearbeiten]

Der Staat verlangt für jede verkaufte Ware und für jede erbrachte Leistung Steuer. Mit diesem Steuergeld werden (im Idealfall) die verschiedenen Leistungen, die der Staat anbietet, finanziert (z.B. Schule, Polizei, Armee, Krankenhäuser).

Runden[Bearbeiten]

Grundregeln des Rundens[Bearbeiten]

Das Quadrat von 7 ist 49 und daher ist die Wurzel von 49 gleich 7 (sie sind Gegenrechnungen). Was ist aber mit der Wurzel von 7? Wenn man die Rechnung mit einem einfacheren Taschenrechner macht, kommt das folgende Ergebnis vor:

2,6457513110645905905

Das bedeutet, dass das Quadrat von 2,6457513110645905905 (die Gegenrechnung) 7 sein sollte. Wenn man aber mit dem Taschenrechner die Rechnung macht:

2,6457513110645905905² = 2,6457513110645905905 · 2,6457513110645905905

kommt 6,99999999999999999999 als Ergebnis heraus, was zwar fast 7 ist, aber nicht genau 7!

Man spricht in diesem Fall vom Runden. Der Taschenrechner gibt beim Wurzelziehen ein Ergebnis an, das nicht genau ist. Das genaue Ergebnis hat unendlich viele Nachkommastellen. Es ist unmöglich die Wurzel von 7 mit einer Kommazahl ganz genau zu bestimmen. Die einzige Weise die Wurzel von 7 genau anzugeben, ist    zu schreiben!

Wie genau das Ergebnis mit Kommastellen ist, hängt vom Taschenrechner ab. Jeder Taschenrechner kann eine bestimmte Anzahl von Nachkommastellen berechnen. Die Wurzel aus 7 mit einer Kommazahl genau anzugeben ist aber nicht möglich.

Der Taschenrechner gibt ein Ergebnis an, das so nah wie möglich zum tatsächlichen Wert von ist und so viele Nachkommastellen hat, wie der Taschenrechner berechnen kann. In der Anzeige des Taschenrechners stehen sogar oft weniger Stellen (wieder gerundet) als die Stellen, die der Taschenrechner berechnen kann[1].

Das Runden ist in solchen Fällen unvermeidbar und oft notwendig und sinnvoll. Stellen wir uns vor, dass ein Produkt 6€ kostet. In einer Sonderaktion wird allerdings ein Rabatt 17% gewährt. In diesem Fall ist der Preis nach dem Rabatt:

6 ⋅ 0,83 = 4,938€

Hier muss man wieder runden. Die Münze mit dem kleinsten Wert ist 1¢ (0,01€). So was wie 0,008€ kann man nicht in Bar bezahlen. Man kann auch nicht genau 4.938€ bezahlen. Man muss auf zwei Nachkommastellen runden:

4,938€ ≈ 4,94€

Warum haben wir hier 4,94 und nicht 4,93 geschrieben?

4,938 liegt näher bei 4,94 als bei 4,93.

Wenn man rundet, rundet man auf (also eins nach oben), wenn die nächste Ziffer 5 oder mehr ist. Man rundet ab (also die Ziffer bleibt die gleiche), wenn die nächste Ziffer weniger als 5 ist:

5,6873729 ≈ 5,69      5,6873729 ≈ 5,687373

5,6873729 ≈ 5,68737     5,6873729 ≈ 5,687     8,785 ≈ 8,79

Im letzten Beispiel sehen wir, dass aufgerundet wird, wenn die nächste Ziffer 5 ist. 8,785 rundet man auf 8,79. Die nächste Ziffer von ist 5, daher wird aufgerundet. Diese Art vom Runden von 5 wird „kaufmännische“ Rundung genannt und wird in der Schule benutzt. Dieser Art der Rundung von 5 kann allerdings zu Probleme führen, besonders in der Statistik. Daher gibt es auch andere Regeln, wie man rundet, wenn die nächste Stelle eine einzige 5 ist.[2]

Wie viele Nachkommastellen muss man schreiben? Das ist vom Problem abhängig.

Die Ziffern ohne die Nullen zu Beginn oder am Ende der Zahl nennt man gültige Ziffern.

Es kann sein, dass bei einer Aufgabe festgelegt wird, auf wie viele Stellen gerundet wird:

Aufgabe: Runden auf drei (gültige) Stellen (oder in diesem Beispiel auf zwei Nachkommastellen)

5,6873729 ≈ 5,69

Aufgabe: Runden auf sieben Stellen (oder in diesem Beispiel auf sechs Nachkommastellen)

5,6873729 ≈ 5,687373

Aufgabe: Runden auf sechs Stellen (oder in diesem Beispiel auf fünf Nachkommastellen)

5,6873729 ≈ 5,68737

Aufgabe: Runden auf vier Stellen (oder in diesem Beispiel auf drei Nachkommastellen)

5,6873729 ≈ 5,687

Aufgabe: Runden auf zwei (gültige) Stellen[3] (oder in diesem Beispiel auf vier Nachkommastellen)

0,002356 ≈ 0,0024

Wenn es keine Angabe über die gültigen Ziffern gibt, schreibt man nicht mehr als 5 oder 6 gültigen Ziffern insgesamt (also samt Ziffer vor dem Komma), beispielsweise:

895,76038≈895,760    0,007854309826≈0,00785   9874086973≈9874100000

In manchen Fällen sollte es von der Aufgabe klar sein, wie vielen gültige Stellen zu erwarten sind. Ein solchen Beispiel haben wir schon mit dem € gesehen.

Ein anderes Beispiel ist, wenn man ein Messband benutzt, um einen Abstand zu messen. Ein Messband kann nur bis mm messen und nichts kleineres. Wenn der gemessene Abstand 145cm ist und ihn in 7 teilt, kann das Ergebnis nur eine Nachkommastelle haben (mm).

Wenn man die Zeit mit einem elektronischen Stoppuhr misst, zeigt diese oft Nachkkommastellen nach der Sekunde, z.B. 6,463s. Das ist wieder völlig daneben, da die Reaktionszeit des Menschen mehr als 0,1s ist. Man kann also mit einer Stoppuhr, die mit der Hand betrieben wird, nicht genauer als eine Nachkommastelle nach der Sekunde messen. Die restlichen Nachkommastellen führen zum falschen Eindruck, dass man doch so genau (mit drei Nachkommastellen) messen kann.

Hier kann man auch erklären: Eine Zahl ändert sich nicht, wenn man eine oder mehrere Nullen vor der ersten Ziffer oder nach der letzten Nachkommastelle hinzufügt:

7,34 = 007,34 = 7,340 = 7,34000 = 000007,34000000

8888 = 8888,0000 = 0008888

  1. Ferner rechnet ein Taschenrechner auch anders als ein typischer Heimcomputer oder ein Notebook. So kann sich zwischen derartigen Geräten ebenfalls ein Unterschied ergeben. Zudem kann es bei solchen Geräten Optionen geben, selbst festzulegen, auf wie viele Stellen ein Ergebnis berechnet werden soll.
  2. Bei der sogenannten kaufmännischen Rundung wird auch bei 5 aufgerundet, was insbesondere bei Verkaufsgeschäften mit kleinen Beträgen dem Händler zugute kommt, wenn dieser viele ähnliche Geschäfte macht, daher vermutlich auch der Name.
    Um das zu verstehen, stelle man sich viele zufällige Zahlen vor, die gerundet werden sollen. Einmal wird die Summe aller Zahlen vor der Rundung berechnet, nennen wir diese Summe V (vor der Rundung). Anschließend wird die Summe aller Zahlen nach der Rundung berechnet, nennen wir diese Summe N (nach der Rundung).
    Man wird feststellen, dass N größer oder gleich V sein wird, was daran liegt, dass bei dieser Methode bei 5 immer aufgerundet wird.
    Um das zu vermeiden, gibt es ein besseres Rundungsverfahren, bei dem es zwei Möglichkeiten gibt. Im Falle von 5 wird bei der einen Möglichkeit immer so gerundet, dass die letzte Ziffer gerade ist. Bei der anderen Möglichkeit wird bei 5 immer so gerundet, dass die letzte Ziffer ungerade ist. Man entscheidet sich bei einer Aufgabe der Rundung vieler Zahlen anfangs einmalig für eine der beiden Möglichkeiten und bleibt daraufhin dabei.
    Bildet man wieder die Summenprobe, wird man feststellen, dass es Zufall ist, ob V oder N größer ist oder beide sogar gleich sind.
    Man sagt: Das Verfahren ergibt keine systematischen Abweichungen.
    Beispiel zur Rundung hin zur geraden Ziffer:
    8,775 ergibt auf drei Stellen gerundet 8,78
    8,765 ergibt auf drei Stellen gerundet 8,76
    8,755 ergibt auf drei Stellen gerundet 8,76
    0,125 ergibt auf zwei Stellen gerundet 0,12
    0,135 ergibt auf zwei Stellen gerundet 0,14
    0,145 ergibt auf zwei Stellen gerundet 0,14
    Entsprechend zur Rundung hin zu ungeraden Ziffern:
    8,775 ergibt auf drei Stellen gerundet 8,77
    8,765 ergibt auf drei Stellen gerundet 8,77
    8,755 ergibt auf drei Stellen gerundet 8,75
    0,125 ergibt auf zwei Stellen gerundet 0,13
    0,135 ergibt auf zwei Stellen gerundet 0,13
    0,145 ergibt auf zwei Stellen gerundet 0,15
    Welches Rundungsverfahren anzuwenden ist, hängt davon ab, in welchem Zusammenhang gerechnet wird (kaufmännisch, wissenschaftlich, statistisch).
  3. (0 zählt hier am Anfang der Zahl bei der Anzahl gültiger Stellen nicht mit)

Aufrunden von 9[Bearbeiten]

Wenn die Ziffer, die gerundet werden muss, 9 ist, gibt es beim Aufrunden eine gewisse Schwierigkeit. Die Ziffer sollte um 1 erhöht werden, es gibt aber keine Ziffer, die mehr als 9 ist. In diesem Fall wird wie bei der Division, also auch mit der vorherigen Ziffer gearbeitet. Runden wir folgende Beispiele auf drei gültigen Stellen:

  • 8,695408

Wir wollen hier drei Stellen benutzen, die letzte Stelle ist 9. Nach der 9 folgt 5, wie müssen also aufrunden. 9 muss um 1 erhöht werden. Das geht nicht. Dann nimmt man zwei Ziffern (also hier die Ziffern nach dem Komma 69) und erhöht sie um 1 (69 wird zu 70). Also:

8,695408≈8,70

  • 0,039995

Wir wollen wieder drei Stellen benutzen, die letzte Stelle ist 9. Nach der 9 folgt 9, wie müssen also aufrunden. 9 muss um 1 erhöht werden. Das geht nicht. Dann nimmt man zwei Ziffern (also hier die Ziffern 99) und versucht sie um 1 zu erhöhen. Das geht auch nicht, 99 ist die größte zweistellige Zahl. In diesem Fall nehmen alle drei Stellen (399) und erhöhen wir sie um 1:

0,039995≈0,0400

Die zwei Nullen nach dem 4 müssen geschrieben werden, um zu zeigen, dass es auf drei gültigen Stellen gerundet wurde.

  • 999,73

In diesem Beispiel muss man wieder alle drei Stellen benutzen, das Runden findet aber doch davor statt!

999,73≈1000

Zahlenmengen[Bearbeiten]

Einführung zu den Zahlenmengen[Bearbeiten]

Einfach gesagt ist eine Menge eine Sammlung von mehreren Sachen. Viele Bücher zusammen sind eine Menge von Bücher, viele Blumen zusammen sind eine Menge von Blumen, viele Ziegen und Schafen und Kühe zusammen sind eine Menge von Tieren. Man kann sogar von einer Menge sprechen auch, wenn man eine Sache hat (z.B. ein Buch) oder keine Sache (die leere Menge). Ein Bereich der Mathematik, die Mengentheorie, beschäftigt sich mit den Mengen. In dieser Theorie spricht man auch von Zahlenmengen.

Natürliche Zahlen[Bearbeiten]

Die einfachste Zahlenmenge ist die Menge der natürlichen Zahlen   :

1, 2, 3, 4, 5 .....

Die Menge der natürlichen Zahlen schreibt man mit  . Null kann auch zur Menge der natürlichen Zahlen gehören. Wie man die Menge mit oder ohne Null schreibt, unterscheidet sich zwischen Sprachen und Kulturen.

Ganze Zahlen[Bearbeiten]

Die Menge der natürlichen Zahlen kann man mit den negativen Zahlen erweitern. Dann entsteht die Menge der ganzen Zahlen   :

.... −3, −2, −1, 0, 1, 2, 3 ....

Alle natürliche Zahlen sind auch ganze Zahlen. Andererseits sind NUR die positive ganze Zahlen (oder die nicht negativen) auch natürliche Zahlen!

Rationale Zahlen[Bearbeiten]

Wenn man natürliche oder ganze Zahlen dividiert, bekommt man oft Zahlen mit Nachkommastellen:

Diese Zahl ist keine ganze (und daher auch keine natürliche) Zahl. Sie ist eine sogenannte rationale Zahl. Die Menge alle Zahlen, die man als Brüche von ganzen Zahlen schreiben kann, ist die Menge der rationalen Zahlen. Man soll aufpassen. 11 durch 7 (11:7) ist eine Division zwischen zwei ganzen Zahlen. Der Bruch    hingegen ist eine Zahl (eine rationale Zahl), die gleich so viel ist, wie das Ergebnis (Quotient) der Division 11:7.

Wenn man zwei ganze Zahlen dividiert, kann man wieder eine ganze Zahle bekommen (wie z.B. 26:2=13) oder eine Zahl mit Nachkommastellen. Wenn das Ergebnis Nachkommastellen hat, dann ist sie keine ganze Zahl mehr.

Alle ganze Zahlen (und daher auch alle natürliche) sind auch rationale Zahlen (z.B.  ). NUR die rationalen Zahlen OHNE Nachkommastellen sind auch ganze Zahlen.

Für die Zahlen mit Nachkommastellen gibt es zwei Möglichkeiten: sie können endlich viele Nachkommastellen haben (z.B.  ) oder unendlich viele Nachkommastellen (wie  ). Im letzten Fall gibt es in den Nachkommastellen eine Wiederholung von der gleichen Zahlenfolge:

Diese wiederholte Zahlenfolge (hier die Zahlenfolge ) nennt man Periode.

Die erweiterte Zahlenmenge (ganze Zahlen und dazu Zahlen mit endlich viele oder unendlich viele aber periodischen Nachkommastellen) nennt man Menge der rationalen Zahlen  .

Reelle Zahlen[Bearbeiten]

Es gibt aber auch Zahlen, die zwar unendlich viele Nachkommastellen haben aber keine Periode.    z.B. ist eine solche Zahl. Es gibt einen Beweis dafür, der zeigt, dass man    NICHT als Bruch von zwei ganzen Zahlen ausdrücken kann.    ist eine sogenannte irrationale Zahl. Die irrationale Zahlen (wie  ) zusammen mit den rationalen (wie    oder −6) bilden zusammen die Menge der reellen Zahlen  .

ALLE rationale Zahlen sind auch reelle Zahlen. NICHT alle reelle Zahlen sind auch rationale Zahlen (z.B.    ist eine Reelle aber keine Rationale Zahl).

Zahlenmengen

Man kann also sagen: 5 ist eine natürliche aber auch eine ganze, eine rationale und eine reelle Zahl.   ist eine rationale, eine reelle aber auch eine ganze Zahl (warum? Weil −14:7 = −2 ist und −2 eine ganze Zahl ist). Sie ist aber keine natürliche Zahl (weil −2 eine negative Zahl ist).    ist nur eine reelle Zahl und keine rationale, ganze oder natürliche Zahl.    ist eine reelle, aber auch eine rationale, eine ganze und eine natürliche Zahl (weil    ist).

Eine Darstellung der Beziehungen zwischen den Mengen kann man im Bild sehen. Die reelle Zahlen beinhalten alle anderen Mengen, sie sind sozusagen die „größte“ Menge, die natürlichen Zahlen hingegen sind in allen anderen Mengen drinnen, beinhalten aber selber keine andere Menge (zumindest nicht in diesem Bild, also, wenn wir über diese 4 Mengen sprechen). Die natürliche Zahlen sind sozusagen die „kleinste“ Menge von diesen 4 Mengen.

Arbeiten mit Termen[Bearbeiten]

Term Definition[Bearbeiten]

Ein Term ist ein mathematischer Ausdruck. ,  ,  ,  ,     sind alles Terme, wobei     aus mehreren Teiltermen besteht.

Potenzen[Bearbeiten]

Potenz Definition[Bearbeiten]

Jeder Term der Form mn ist eine Potenz. Was unten steht (hier m) nennt man Basis, was oben rechts (hier n) Hochzahl.

Potenz        Was bedeutet diese Schreibweise?

Wenn man 4+4+4 hat, kann man auch 3·4 schreiben: . Eine Multiplikation zeigt, wie oft man eine Zahl mit sich selbst addiert.

Wenn man 4·4·4 hat, dann kann man 4³ schreiben. Eine Potenzzahl (hier 4³) zeigt, wie oft (so oft, wie die Hochzahl, hier 3) man eine Zahl (die Basis, hier 4) mit sich selbst multipliziert.

Potenzen Erklärung[Bearbeiten]

Strichrechnungen unter Potenzzahlen[Bearbeiten]

Wir haben gelernt, dass eine Multiplikation uns zeigt, wie oft die gleiche Zahl innerhalb einer Summe vorkommt. Beispielsweise ist . Das bedeutet allerdings auch, dass ist, weil

Eine Potenzzahl zeigt, wie oft die gleiche Zahl innerhalb eines Produktes vorkommt. Beispielsweise: .

Was ist jetzt, wenn wir Potenzzahlen addieren (oder subtrahieren)?

Eine Vereinfachung einer Strichrechnung zwischen Potenzen ist nur dann möglich, wenn die Potenzzahl die gleiche Basis und die gleiche Hochzahl hat.

Nehmen wir ein Beispiel: .

Bei 3a² und 7a² hat die Potenzzahl a² die gleiche Basis a und die gleiche Hochzahl 2. Diese Potenzen können zusammengerechnet werden:

Entsprechend können wir mit a⁴ arbeiten:

a² und a⁴ können wir hingegen nicht zusammenrechnen, da sie zwar die gleiche Basis a aber nicht die gleiche Hochzahl (2 bzw. 4) haben.

a² und b² können wir auch nicht zusammenrechnen, da sie zwar die gleiche Hochzahl 2 aber nicht die gleiche Basis (a bzw. b) haben.

Daher ist:

Warum ist es so? Wie schon erwähnt, können nur gleiche Summanden durch eine Multiplikation ersetzt werden:

Wenn wir 3⁴ und 3² anstatt 3 haben, sind die Summanden nicht gleich, da 3⁴=3·3·3·3=81 und 3²=3·3=9 ist:

Nur Potenzen, die sowohl die gleiche Basis als auch die gleiche Hochzahl haben, können zusammengerechnet werden.

Noch ein Beispiel:

 

Multiplikation von zwei Potenzen mit der gleichen Basis[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Zwei Potenzzahlen mit der gleichen Basis kann man multiplizieren, indem man die gleiche Basis und als Hochzahl die Summe der Hochzahlen schreibt.

Warum das so ist, ist leicht zu erklären:

Die Hochzahlen addiert man, auch wenn sie negativ sind:

Allgemein kann man daher folgern:

wobei n und m irgendwelche positive oder negative reelle Zahlen sein können.

Vorischt! Bei einer Addition oder Subtraktion von Potenzen kann man dagegen die Hochzahlen nicht addieren!

Division von zwei Potenzen mit der gleichen Basis[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Zwei Potenzzahlen mit der gleichen Basis kann man dividieren, indem man die gleiche Basis und als Hochzahl die Differenz der Hochzahlen (oben minus unten!) schreibt.

Warum das so ist, ist leicht zu erklären:

Die Hochzahlen subtrahiert man (oben minus unten), auch wenn sie negativ sind:

Da ein Bruch (fast) gleichbedeutend mit einer Division ist, kann man auch sagen, dass bei der Division von Potenzzahlen mit gleicher Basis das Ergebnis die gleiche Basis ist, mit einer Hochzahl, die die Differenz aus der Hochzahl des Dividends und der Hochzahl des Divisors ist. Allgemein kann man daher schreiben:

wobei n und m irgendwelche positive oder negative reelle Zahlen sein können.

Null als Hochzahl[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Mit Hilfe des letzten Satzes kann man auch, mit Hilfe eines Beispiels, zeigen, dass und ist. Es gilt:

und nach der Regel gilt auch:

Also ist gleichzeitig gleich 1 und gleich . Daher gilt:

Potenz einer Potenzzahl[Bearbeiten]
Die Potenz einer Potenzzahl wird durch Multiplikation der Hochzahlen vereinfacht.

Warum das so ist, kann man wie im Folgenden erklären:

Kurze Erklärung zum Schritt : . Hier haben wir die eben erklärte Multiplikationsregel benutzt: .


Die Hochzahlen multipliziert man, auch wenn sie negativ sind:

Allgemein kann man daher schreiben:

wobei n und m irgendwelche positive oder negative reelle Zahlen sein können.

Potenz eines Produktes oder eines Bruches[Bearbeiten]
Ein Produkt wird dadurch potenziert, indem seine Faktoren mit der gleichen Hochzahl Potenziert werden. Ein Bruch wird dadurch potenziert, indem sowohl sein Zähler als auch sein Nenner mit der gleichen Hochzahl potenziert werden.

Mit einem Beispiel kann auch dieser Zusammenhang schnell erklärtwerden:

und entsprechend für einen Bruch:

Es gilt also allgemein:

Weitere Beispiele:

{{#ifeq:Mathematrix: AT AHS/ Theorie/ Klasse 4|Mathematrix: AT PSA Theorie nach Thema/ Arbeiten mit Termen |
|

Binomische Formeln[Bearbeiten]

Binomische Formeln ausmultiplizieren[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Allgemein kann man die binomischen Formeln als eine Art mathematisches Spiel wahrnehmen, dass auf die höhere Mathematik vorbereitet.


Es gibt drei binomische Formeln:

  • Die Plusformel:
(a+b)²   =   a² + 2ab + b²
  • Die Minusformel:
(a-b)²   =   a² -2ab +b²
  • Die Plusminusformel:    
(a+b) (a-b)   =   a² – b²


Warum (a+b)² = a² + 2ab + b² ist, kann man leicht feststellen, wenn man die Potenz auf ihre Faktoren zerlegt und die Klammern aus multipliziert:

(a+b)² = (a+b) (a+b) = a² + ab + ba +b² = a² + 2ab + b²

Ähnlich kann man die anderen Formeln zeigen:

(a-b)² = (a-b) (a-b) = a² – ab – ba +b² = a² – 2ab + b²
(a+b)(a-b) = a² + ab – ba – b² = a² – b²


Nun die Aufgaben, die mit binomischen Formeln zu tun haben, gehen davon aus, dass man die binomische Formeln schon kann und an der Stelle von a und b andere Terme stehen:

  • Plusformel: (3d+5)²     Hier haben wir statt a 3d und statt b 5.
(a + b)² = + 2 a b +
(3d + 5)²   =  (3d)²  +   2   (3d)   (5)   +   5² 
= 9d² + 30d + 25


  • Minusformel: (c – 4x)² Hier haben wir statt a c und statt b 4x.
(a b)² = 2 a b +
(c 4x)²   =  (c)²  −   2   (c)   (4x)   +   (4x)² 
= 8cx + 16x²


  • Plusminusformel: (5u + 2v) (5u – 2v) Hier haben wir statt a 5u und statt b 2v.
(a + b)² (a b) =
(5u + 2v)²   ⋅  (5u)  −   2v   =   (5u)²   −   (2v)² 
= 25u² 4v²


Binomische Formeln faktorisieren[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Besonders wichtig sind die binomischen Formeln bei den Umkehraufgaben:

36x² – 60ax +25a²=?

Hier ist gefragt, den Term als Quadrat eines sogenannten Binoms oder als Produkt von Faktoren (in Klammern) zu schreiben. Man kann sofort beobachten, dass es drei Summanden gibt, drei Teilterme: 36x², 60ax, 25a². Dadurch kann man sofort die Plusminus Formel ausschließen (da gibt es nur zwei Terme: a²-b²). Da es am mittleren Term ein Minus gibt, findet man sofort, dass es um die Minusform geht. Die quadratischen Terme sind 36x² und 25a². Wenn man sich ein bisschen mit den Quadratzahlen auskennt, weiß man, dass 36 das Quadrat von 6 und 25 das Quadrat von 5 ist. Also kann 36x² nur das Quadrat von 6x und 25a² von 5a sein. Der mittlere Term sollte dann 2·6x·5a sein, was auch tatsächlich stimmt ( 2·6x·5a=60ax). Daher gilt:

36x² – 60ax +25a² = (6x – 5a)²


Binomische Formeln erkennen[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Noch ein Beispiel:

121d² – 4t²

Das kann nur die Plusminusform sein, weil sie die einzige ist, die nur zwei Teilterme hat. Daher:

121d² – 4t² = (11d + 2t) (11d – 2t)

Bemerkung: die ersten sogenannten Quadratzahlen sind:

1 (=1²), 4 (=2²), 9 (=3²), 16 (=4²), 25 (=5²), 36 (=6²), 49 (=7²), 64 (=8²), 81 (=9²), 100 (=10²), 121 (=11²), 144 (=12²).

Das pascalsche Dreieck Binompotenzen[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Im Kapitel über die binomische Formeln wurde impliziert, dass jeder Term mit zwei Summanden „Binom“ genannt wird. Beispiele:

ist dann kein Binom mehr (drei Summanden).  (Hier wird der erweiterte Begriff von Summand benutzt: a+b-c ist die Summe der drei Terme „a“, „b“ und „−c“)

Wir haben bisher nur Binompotenzen mit 2 als Hochzahl gesehen. Es gibt Binompotenzen höheren Grades, also mit einer höheren Hochzahl aus dem Bereich der natürlichen Zahlen:

Bei der Erklärung der binomischer Formeln haben wir das Auflösen von Klammern benutzt. Bei wäre so was schon komplizierter, bei höheren Hochzahl schon ziemlich kompliziert. Um diese Ausdrücke ohne Klammer zu schreiben (Ausmultiplizieren), gibt es einen viel einfacheren Weg, das pascalsche_Dreieck.

Das pascalsche Dreieck

Mit Hilfe dieses Dreiecks, kann man die sogenannten Koeffizienten der entstehenden Summanden leicht berechnen. In der Animation kann man eine Erklärung des Aufbaus des Dreiecks sehen:

PascalTriangleAnimated2.gif

Das ganze Dreieck ist ein (gleichschenkliches) Zahlendreieck. Die Basis erweitert sich ständig, die Schenkel bestehen aus lauter Einser. Die erste zwei Zeilen sind ein gleichschenkliches Zahlendreieck mit 1 an jedem Eckpunkt.

PascalAnfang.png

Für die nächste Zeile schreibt man an den Rändern 1 und für die innere Zahlen addiert man immer jeweils zwei nebenstehenden Zahlen der vorherigen Zeile. Für die dritte Zeile hier schreibt man an den Rändern 1 und in der Mitte addiert man die zwei Einser von oben (Ergebnis 2):

Die dritte Zeile des Pascalschen Dreiecks

Die vierte und die fünfte Zeile (und alle weitere Zeilen) entstehen in der gleichen Weise:

Die ersten vier Zeilen des Pascalschen Dreiecks
Die ersten fünf Zeilen des Pascalschen Dreiecks

Wie kann man jetzt ausmultiplizieren?

Man schriebt eine Summe mit 4 Summanden (einen mehr als die Hochzahl des Binoms, hier ein mehr als 3). Jeder Summand besteht aus dem Produkt von a und b mit einer absteigende Hochzahl für a und eine aufsteigende Hochzahl für b. Die erste Hochzahl für a ist die Hochzahl des Binoms (hier 3 absteigend), für b ist sie Null (aufsteigend bis 3):

Wir benutzen dann die vierte Zeile des Dreiecks. Sie hat so viele Zahlen, wie die Anzahl der Summanden (4):

Diese Zahlen werden die Koeffizienten der Summanden sein:

Wenn im Binom Plus steht (a+b), dann steht Plus zwischen allen Summanden. Wenn im Binom Minus steht (a-b), dann alternieren sich plus und minus in der Summe. Berücksichtigen wir auch folgende Tatsachen: und , dann ergibt sich:

und

zusammengefasst:

Für kann man dann genau in der gleichen Weise das Binom leicht ausmultiplizieren. Hier hat man fünf Summanden, also muss die fünfte Zeile des pascalschen Dreiecks benutzt werden (1 4 6 4 1):

Wenn also das Binom (3d−2c)3) ausmultipliziert werden soll, dann wird der Ausdruck für (a−b)3 und an der Stelle von a → 3d benutzt (und an der Stelle von b → 2c).

also


Umformen[Bearbeiten]

Umformen Grundwissen Gegenrechnungen[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Nachdem Vassili Lisa drei Äpfel gibt, hat er fünf Äpfel. Wie viele Äpfel hatte er vorher?

Wie kann man diese Aufgabe in der mathematischen Sprache schreiben? Für das Gefragte (wie viele Äpfel) wird in Mathematik irgendein Symbol benutzt, als Stellvertreter für die noch unbekannte Zahl. In der Regel wird als Symbol ein Buchstabe verwendet und nicht allzu selten x.
Mit x sind also die Äpfel gemeint, die Vassili am Anfang hatte. Wir wissen noch nicht, wie viele sie waren, daher schreiben wir ein Symbol dafür, ein Buchstabe, also x.

Wenn Vassili drei Äpfel der Lisa gibt, dann hat er weniger Äpfel als zuvor, es geht um eine Subtraktion. Von den x Äpfeln am Anfang sind drei Äpfel zu subtrahieren. Dass dann noch fünf Äpfel bleiben, wird durch den folgenden mathematischen Ausdruck geschrieben:

x−3=5

Man kann für x verschiedene Zahlen ausprobieren, z.B. 2, 3, 7, 8 oder 9. So kann man schon feststellen, dass nur acht minus drei gleich fünf ist. „x“ muss also 8 sein, damit die Rechnung stimmt. Vassili hatte also 8 Äpfel am Anfang.

Die ganze Zeit ausprobieren ist allerdings nicht gerade geschickt. Besonders bei größeren Zahlen wird es sogar ziemlich schwer. Es gibt in der Mathematik einen geschickteren Weg, die Aufgabe zu lösen. Man benutzt die sogenannte Gegenrechnung. Bei allen Gleichungen gibt es zwei Teile, ein Teil links vom „=“ und ein Teil rechts vom „=“. Bringt man einen Term von einer Seite zur anderen, dann muss man die Gegenrechnung benutzen.

Die Gegenrechnung der Subtraktion ist die Addition und umgekehrt.

Wenn x−3=5 ist, dann kann man die 3 auf die andere Seite vom „=“ bringen und statt minus die Gegenrechnung (plus) benutzen:

x=5+3       also x=8

Bei der Aufgabe c+4452 = 341 bringt man 4452 auf die andere Seite und benutzt die Gegenrechnung von minus. Die Lösung ist daher:

c+4452 = 341 → c= 341−4452 → c = −4111

Die Gegenrechnung der Multiplikation ist die Division und umgekehrt.

3f=114

Zwischen 3 und f steht nichts.

Wenn in Mathematik zwischen zwei Ausdrucken (zum Beispiel einer Zahl und einem Symbol, einer Klammer und einer Zahl und so weiter) nichts steht, dann ist Multiplikation gemeint (einzige Ausnahme: die gemischten Zahlen).

Da zwischen 3 und f nichts steht, ist mal gemeint. f ist ein Symbol und steht für irgendeine Zahl. Die Aufgabe ist herauszufinden, wie viel f sein soll, damit die Rechnung stimmt. In diesem fall soll 3 auf die andere Seite gebracht und die Gegenrechnung von mal (also durch) benutzt werden:

3f=114 (nichts zwischen 3 und f, also mal gemeint):

3·f=114 (3 auf die andere Seite von „=“ bringen und Gegenrechnung, also hier Division, benutzen)

f=114:3 und daher

f = 38.

Man kann auch einen Bruch statt einer Division benutzen:

Entsprechend ist die Gegenrechnung der Division die Multiplikation:

   also k:5 = 11 und daher k = 11 · 5

k = 55

Was ist aber die Gegenrechnung vom Quadrat?

Die Gegenrechnung von Quadrat ist die sogenannte „Wurzel“:

z² = 81 also z =   und daher z=9

9 ist die Zahl, deren Quadrat 81 ist, daher ist die Wurzel von 81 gleich 9. Wenn wir in der Gleichung z² = 81 z durch 9 ersetzen, dann stimmt die Gleichung tatsächlich: 9² = 81

Selbstverständlich ist die Gegenrechnung der Wurzel das Quadrat.

= 13 also m = 13² und daher m=169

Obwohl es für das Niveau dieses Buches nicht absolut notwendig ist, können wir doch auf eine Tatsache aufmerksam machen: Die Gleichung z² = 81 hat noch eine Lösung, wenn z gleich −9 ist. Freilich stimmt die Gleichung (−9)² = 81. (−9)² bedeutet (−9)·(−9). Minus mal minus ist plus und daher:

(−9)² =(−9)·(−9)= + 9·9 = 81 also

(−9)² = 81


Umformen einfache Kombinationen[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Wenn man mehrere Summanden und Rechenarten und eine unbekannte Variable hat, dann soll man alle Teilterme (Summanden) mit der gesuchten Variable auf eine Seite bringen. Im Folgenden werden alle Terme mit der gesuchten Variable nach links gebracht. Die restlichen Terme werden auf die andere Seite gebracht (das geht aber selbstverständlich auch umgekehrt). Schauen wir ein Beispiel an:

5x − 7 = 3x + 11

Wir wählen die linke Seite als die Seite, in der die Teilterme (Summanden) mit der gesuchten Variable (x) sein werden. Wir haben zwei solchen Teilterme, 5x und 3x. 5x ist schon auf der linken Seite, wir müssen also noch 3x auf die andere Seite bringen. Vor 3x steht das Symbol „=“. Ist 3x jetzt positiv oder negativ? Wenn man b=4 schreibt, ist +4 oder −4 gemeint? Die Antwort ist +4. Daher auch hier, wenn nach dem Symbol „=“ kein plus oder minus steht, dann ist ein plus gemeint. Wenn man 5x − 7 = 3x + 11 schreibt, ist es das Gleiche wie + 5x − 7 = + 3x + 11. Wenn man den Term 3x auf die andere Seite bringt, muss man die Gegenrechnung benutzen, also Subtraktion (minus).

5x − 7 − 3x = 11

7 hat kein x neben sich, sie muss auch auf die rechte Seite gebracht werden, wieder mit der Gegenrechnung, also diesmal mit Addition (plus):

5x − 3x = 11 + 7

Das Ganze kann man in einem Schritt machen:

5x − 7 = 3x + 11

5x − 3x = 11 +7

2x = 18
(Hier haben wir einfach die Rechnungen gemacht: 5x-3x ist 2x und 11+7 ist 18).

Es bleibt noch, 2 auf die andere Seite zu bringen. Zwischen 2 und x steht nichts, daher ist eine Multiplikation gemeint. Die Gegenrechnung ist eine Division:

x = und daher x = 9

Man kann das ganze auch so erklären:

5x − 7 = 3x + 11

Man will, dass auf der rechten Seite 3x verschwindet. Das kann passieren, indem man 3x subtrahiert. Ein Gleichung aber ist wie eine Waage. Das Gleichungssymbol (=) teilt die Gleichung in zwei Teilen, links und rechts. Was auf der einen Seite passiert, muss auch auf der anderen stattfinden, damit das Gleichgewicht erhalten bleibt. Man benutzt folgende Schreibweise:

5x − 7 = 3x + 11      | −3x (Man schreibt am Rand, was auf beiden Seiten zu tun ist)

5x − 7 − 3x = 3x + 11 − 3x

2x − 7 = 11

Man will aber auf der linken Seite nur Teilterme (Summanden) mit x haben, deshalb muss die -7 dort verschwinden. Das geht, indem man 7 auf beiden Seiten addiert.

2x − 7 = 11      | +7

2x − 7 + 7 = 11 + 7

2x = 18

Jetzt bleibt nur die Division:

2x = 18      | :2

x = 18 : 2      (Man kann auch    schreiben)

x = 9


Sofern mehrere Teilrechnungen oder Zwischenschritte im Kopf durchgeführt werden, wird zusammengefasst und kürzer notiert:

5x − 7 = 3x + 11      | −3x+7

2x = 18      | :2

x =  

x = 9

Wenn die Variable innerhalb einer Klammer steht, ist der erste Schritt, die Klammer aufzulösen, sonst geht man wie vorher vor:

4y + 3 (7 − 5y) = 11 − 6y

4y + 21 − 15y = 11 − 6y | −21

4y − 15y = 11 − 6y −21 | +6y

4y − 15y + 6y = 11 − 21

− 5y = −10 | : (−5)

y=2


Wenn man y durch 2 in der Anfangsgleichung 4y + 3 (7 − 5y) = 11 − 6y ersetzt, stellt man fest, dass die Gleichung tatsächlich stimmt.

4y + 3 (7 − 5y) = 11 − 6y

4·2 + 3 (7 − 5·2) = 11 − 6·2

8 + 3 ·(−3) = 11 − 12

8 − 9 = − 1

In der Tat ist 2 der einziger Wert von y, für den die Gleichung wirklich stimmt. Die LeserInnen können andere Werte ausprobieren und feststellen, dass die Gleichung dann nicht mehr stimmt.


Bruchterme[Bearbeiten]

Bruchterme kürzen[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Die Kenntnisse dieses Kapitels kann man benutzen, um Bruchterme zu kürzen. Zuerst vereinfacht man die Terme sowohl oben (im Zähler) als auch unten (im Nenner), dann hebt man heraus, was man herausheben kann (oben und unten) und am Ende schaut man nach, ob eine binomische Formel vorhanden ist (wieder oben und unten, im Zähler und im Nenner). Am Ende, wenn man Produkte im Zähler und im Nenner hat, kann man kürzen, wenn es möglich ist: Nehmen wir beispielsweise folgenden Bruchterm:

  • Erster Schritt: Vereinfachen (geht nur im Zähler;  ist so viel wie ): 

  • Dritter Schritt: Nach binomischen Formeln suchen. Das geht hier nur unten; der Term im Klammer   ist nach der Minus binomische Formel gleich . Daher ergibt sich der Bruch: 

  • Vierter Schritt: Kürzen, was man kürzen kann: 

Das Ergebnis ist daher:

Bruchterme in Brüchen mit gemeinsamen Nenner umwandeln[Bearbeiten]

Im Kapitel über Brüchen haben wir schon gesehen, wie man zwei gleichnamige und zwei ungleichnamige Brüche addiert:

Brüche mit gleichem Nenner:

Brüche mit unterschiedlichen Nennern: Zähler und Nenner des ersten Bruches mit Nenner des zweiten erweitern und entsprechend für den zweiten Bruch!

Bruchstrich1.jpg

Dabei ist es nicht wichtig, ob man minus oder plus zwischen den Brüchen hat. Allein der Nenner (ob er der gleiche oder nicht ist) spielt einer Rolle.


Der Vorgang ist genau der gleiche für Bruchterme.

Brüche mit gleichem Nenner:

Brüche mit unterschiedlichen Nennern:


Wenn aber die Sache etwas komplizierter wird, dann benutzt man einen Vorgang, der sehr ähnlich zum Verfahren der Primfaktorzerlegung und ihre Anwendung bei Strichrechnungen zwischen mehreren Brüchen ist.

Für jeden Teilterm, jede Variable, im Nenner, wählt man die höchst Hochzahl die vorkommt. Diese wird dann im gemeinsamen Nenner benutzt. Für a ist sie 3 (a³), für t 7 (t⁷), für x ist die Hochzahl 1(x¹ also x) und für s auch 1 (also s). Der gemeinsame Nenner wird daher a³t⁷xs sein. Den Zähler multipliziert man dann, mit den aus dem Nenner fehlenden Teilen.

Wieso habe wir den Zähler im ersten Bruch (5s) mit ts multipliziert? Wir haben erst den gemeinsamen Nenner (a³t⁷xs) durch den Nenner des Bruches (a³t⁶x) dividiert:

Mit diesem Term (diesem Ergebnis) muss man den Zähler multiplizieren. Den gleichen Prozess haben wir beim zweiten Bruch wiederholt. Dieser Prozess allerdings (gemeinsamen Nenner durch den jeweiligen Nenner dividieren) haben wir auch bei den Strichrechnungen zwischen mehreren Brüchen benutzt, wo wir auch die Primfaktorzerlegung angewandt haben.


Was im Zähler steht, ist nicht so wichtig. Im Nenner allerdings können die Faktoren größere Terme in Klammern sein:

Finden wir erst den gemeinsamen Nenner. Es gibt im Nenner des ersten Bruches die Termen a, w, (t-1), (t+1) und (t-3). Im zweiten Bruch findet man im Nenner noch folgende Terme dazu: p, (q^2+7+r). Wir sollten für den gemeinsamen Nenner die höchste Hochzahl des jeweiligen Terms benutzen. Beispielsweise ist diese für den Term a die Hochzahl 3, für den Term w die Hochzahl 5, für den Term (t+1) die Hochzahl 5 usw. Der gemeinsame Nenner wird dann    sein.

Der Zähler des ersten Bruches wird durch den Quotient des gemeinsamen Nenners durch den Nenner des ersten Bruches erweitert:

Entsprechend für den zweiten Bruch:

Nun kann man das Ganze in einem Bruch schreiben:



Bruchtermegleichungen[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Wie das Wort besagt, sind Bruchtermegleichungen Gleichungen, die Bruchterme beinhalten. Wir werden hier uns mit Bruchtermegleichungen, die nur eine unbekannte Variable beinhalten, beschäftigen. Ziel ist durch Umformungen den Wert der Variable zu finden, der die Gleichung erfüllt.

Die Schritte, um die Lösung zu finden, sind am Anfang wie die Schritten bei Abschnitt„Bruchterme kürzen“.

  • Erster Schritt: Vereinfachen (geht nur im Zähler des ersten Bruches;  ist so viel wie ): 
  • Zweiter Schritt: Herausheben (geht nur im Zähler und im Nenner des ersten Bruches;): 
  • Dritter Schritt: Nach binomischen Formeln suchen (das geht hier nur im Nenner des Bruches auf der rechten Seite der Gleichung:  ):  
  • Vierter Schritt: Kürzen, was man kürzen kann (das geht in diesem Beispiel beim ersten Bruch:  ). Damit ergibt sich:


  • Fünfter Schritt: Hat man diese Schritte überprüft, versucht man die Bruchterme auf den gleichen Nenner zu bringen, wie am vorherigen Teilkapitel gezeigt. Hier gibt es im Nenner zwei verschiedenen Terme,   und . Der Bruch auf der rechten Seite hat schon beide, man braucht (und darf) ihn NICHT erweitern. Am ersten Bruch fehlt noch der Term   und mit diesem muss er erweitert werden. Am zweiten Bruch fehlt der Term   und mit diesem muss er erweitert werden.

  • Sechster Schritt: Jetzt haben wir überall den gleichen Nenner. Wenn wir beide Seiten der Gleichung (also alle Brüche) mit diesem Nenner multiplizieren, dann wird er überall gekürzt.

  • Siebter Schritt: Das vorläufige Ergebnis ist daher die folgende Gleichung, die wir dann mit einfachen Umformungen lösen können:

Die Lösungsmenge, also die Zahlen, die die Bruchtermegleichung am Anfang erfüllen, ist hier nur eine Zahl, die Zahl −2. Man schreibt:

Wie man sieht, ist die Lösung einer Bruchtermegleichung kompliziert. Das Üben und die Erfahrung machen die Sache selbstverständlich einfacher. Es gibt aber doch noch einen Schritt, um so eine Gleichung vollständig zu lösen: Die Definitionsmenge muss vorerst herausgefunden werden. Mit diesem Schritt beschäftigen wir uns im nächsten Teilkapitel.

Polynomdivision[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
BAUSTELLE
Hier entsteht ein
neues Unterkapitel

Entferne die Vorlage mit den folgenden Erstellen- bzw. Korrigierenlinks nur wenn du mit allen (samt Theorieteil) fertig bist!

Schau auch, ob dieses Unterkapitel an der richtigen Stelle im richtigen Kapitel entstanden ist!


Neue Aufgabensammlung erstellen: Mathematrix:_Aufgabensammlung/_Polynomdivision
Aufgabensammlung Zentralseite korrigieren!
CopyPaste Seite korrigieren!
Linksseite korrigieren!
Externe-Links-Seite korrigieren!
Neues Aufgabenbeispiel erstellen: Mathematrix: Aufgabenbeispiele/_Polynomdivision
Aufgabenbeispiele Zentralseite korrigieren!
BackUp Beispiele und Aufgabensammlung korrigieren
Neuen Abschnitt zum entsprechenden Antwort-Kapitel hinzufügen:


Hier fängst du mit der Theorie des neuen Unterkapitels an!

Definitionsmenge[Bearbeiten]

Nehmen wir folgendes Beispiel:

In den Nennern gibt es verschiedene Terme:

Alle diese Terme kann man als Produkte von verschiedenen Faktoren schreiben:

Alle diese Faktoren stehen im Nenner. Es gibt eine Regel in Mathematik, die besagt:

Die Division durch 0 ist nicht definierbar.

Warum das so ist, kann man in der höheren Mathematik zeigen. Der Nenner darf also nicht null sein. In welchen Fällen kann der erste, der zweite oder der dritte Nenner null sein? Dafür setzen wir diese Nenner gleich null!

Wann kann jetzt der erste Ausdruck null sein? Wenn zumindest einer der Faktoren null ist!

In der gleichen Weise für die anderen zwei Nenner:

Der Ausdruck kann nur dann definiert werden, wenn x nicht 0, 1 oder -1 ist. x darf daher alle andere Zahlen sein außer -1, 0 und 1. All die Zahlen, die x sein darf, nennt man Definitionsmenge. Man sagt, dass die Definitionsmenge die Menge der reellen Zahlen außer -1,0 und 1 ist und schreibt:

oder

Die Definitionsmenge anzugeben ist bei jeder Aufgabe sehr wichtig. Nehmen wir das Beispiel am Anfang und setzen wir es gleich null:

Die Lösungsschritte haben wir im vorherigen Absatz gelernt. Die Definitionsmenge ist (wie gerade eben gezeigt)  . Wer die Lösungsschritte macht, kommt zum Ergebnis . Dieser Wert gehört aber nicht zur Definitionsmenge. x darf nicht -1 sein, weil in diesem Fall eine Division durch null vorkommt. Man sagt in diesem Fall, dass die Gleichung keine Lösung hat (und sie hat tatsächlich keine Lösung: -1 kann keine Lösung sein!) oder dass die Lösungsm