Beweisarchiv: Geometrie: Planimetrie: Regelmäßige Vielecke: Viereck
Zur Navigation springen
Zur Suche springen
- Schwerpunktsätze von Leibniz
- Planimetrie
- Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Tangentenviereck · Japanischer Satz für konzyklische Vierecke · Satz des Thales
- Rechtwinkliges Dreieck: Satz des Pythagoras
- Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
- Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
- Inzidenzgeometrie ·
- Trigonometrie
- Additionstheoreme: Sinus · Kosinus · Tangens · Kotangens
- Trigonometriesätze: Sinussatz · Kosinussatz · Neue Folgerungen aus dem Projektionssatz der Dreiecksgeometrie
- Trigonometrie in der komplexen Ebene: Tangens und Kotangens in rechtwinkligen Dreiecken aus komplexen Zahlen
Gleichseitiges Viereck (Quadrat)[Bearbeiten]
Inkreisradius[Bearbeiten]
(1)
(1a) Inkreisradius
Umkreisradius[Bearbeiten]
Nach Pythagoras und (1a) eingesetzt
(2)
(3) Umkreisradius
Diagonale[Bearbeiten]
Nach Pythagoras
(4)
(5) Diagonale
Fläche[Bearbeiten]
(6)
(6a) Fläche
- Schwerpunktsätze von Leibniz
- Planimetrie
- Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Tangentenviereck · Japanischer Satz für konzyklische Vierecke · Satz des Thales
- Rechtwinkliges Dreieck: Satz des Pythagoras
- Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
- Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
- Inzidenzgeometrie ·
- Trigonometrie
- Additionstheoreme: Sinus · Kosinus · Tangens · Kotangens
- Trigonometriesätze: Sinussatz · Kosinussatz · Neue Folgerungen aus dem Projektionssatz der Dreiecksgeometrie
- Trigonometrie in der komplexen Ebene: Tangens und Kotangens in rechtwinkligen Dreiecken aus komplexen Zahlen