Beweisarchiv: Geometrie
- Schwerpunktsätze von Leibniz
- Planimetrie
- Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Tangentenviereck · Japanischer Satz für konzyklische Vierecke · Satz des Thales
- Rechtwinkliges Dreieck: Satz des Pythagoras
- Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
- Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
- Dreieck: Satz des Heron · Berechnung des Flächeninhalts des Diagonalendreiecks im Quader · Elementarer Satz zur Charakterisierung des Schwerpunkts im Dreieck via Flächeninhalte
- Viereck: Flächenformel von Bretschneider
- Inzidenzgeometrie ·
- affine Geometrie: einfache Hilfssätze · Homothetien und Translationen · Desarguesche affine Ebenen sind Vektorräume
- Trigonometrie
- Additionstheoreme: Sinus · Kosinus · Tangens · Kotangens
- Trigonometriesätze: Sinussatz · Kosinussatz · Neue Folgerungen aus dem Projektionssatz der Dreiecksgeometrie
- Trigonometrie in der komplexen Ebene: Tangens und Kotangens in rechtwinkligen Dreiecken aus komplexen Zahlen
Beweis für:
Es gilt:
(1)
Nach den Additonstheoremen (Sinus) und (Kosinus)
(2.1)
(2.2)
in (1) eingestzt
(3)
Zähler und Nenner durch geteilt
(4.1)
(4.2)
mit eingesetzt
(5)
Wenn Winkel negativ:
(6)
weil
(7)
(8.1)
Zähler und Nenner mal -1
(8.2)
(5) und (8.2) zusammengefasst
(9)
Additionstheoreme