Beweisarchiv: Mengenlehre: Injektivität Surjektivität Bijektivität: Komposition

Aus Wikibooks
Zur Navigation springen Zur Suche springen

Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn


Komposition von injektiven, surjektiven oder bijektiven Abbildungen[Bearbeiten]

Voraussetzung[Bearbeiten]

und seien Abbildungen.

Behauptung[Bearbeiten]

  1. Sind und injektiv, dann auch .
  2. Sind und surjektiv, dann auch .
  3. Sind und bijektiv, dann auch .

Beweis[Bearbeiten]

  1. Seien und als injektiv vorausgesetzt und . Weiter seien mit . Wir müssen zeigen.
    Nach Definition von gilt . Da injektiv ist, folgt . Da injektiv ist, folgt .
  2. Seien und als surjektiv vorausgesetzt und . Weiter sei ein Element vorgegeben. Wir müssen ein mit finden.
    Da surjektiv ist, gibt es ein Element mit . Da surjektiv ist, gibt es ein Element mit . Zusammen haben wir wie verlangt.
  3. Dies folgt aus 1 und 2, da ja bijektiv injektiv surjektiv.

Wikipedia-Verweise[Bearbeiten]

Bijektivität - Injektivität - Komposition - Surjektivität


Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn