Beweisarchiv: Mengenlehre: Injektivität Surjektivität Bijektivität: Rechtsinverse

Aus Wikibooks
Wechseln zu: Navigation, Suche

Beweisarchiv: Mengenlehre

Injektivität Surjektivität Bijektivität: Faktoren - Komposition - Linksinverse - Linkskürzbarkeit - Rechtsinverse - Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung - Kardinalität und Bijektionen - Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze - Distributivgesetze - Differenzgesetze - Grundeigenschaften der Inklusion - De Morgansche Regeln für Mengen
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element - Elemente von Ordinalzahlen sind Ordinalzahlen - Durchschnitte von Ordinalzahlen sind Ordinalzahlen - Wohlordnung der Klasse aller Ordinalzahlen - Ordinalzahlen bilden eine echte Klasse - Der Nachfolger einer Ordinalzahl ist Ordinalzahl - Vereinigungen von Ordinalzahlen sind Ordinalzahlen - Limes- und Nachfolgerzahlen - Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms - Wohlordnungssatz - Lemma von Zorn


Surjektivität und rechtsinverse Abbildung[Bearbeiten]

Voraussetzung[Bearbeiten]

sei eine Abbildung.

Behauptung[Bearbeiten]

ist surjektiv hat eine Rechtsinverse .

(Dabei heißt eine Rechtsinverse zu , wenn gilt.)

Beweis[Bearbeiten]

  •  : werde als surjektiv vorausgesetzt. Jedes Element hat also mindestens ein Urbild unter der Abbildung . sei eine Funktion, die jedem ein Urbild zuweist (eine solche Funktion existiert nach dem Auswahlaxiom). Dann ist erfüllt.
  •  : Es gelte . Nun sei gegeben. Wir müssen ein mit angeben.
    Die Festlegung leistet das Verlangte, denn .

Wikipedia-Verweise[Bearbeiten]

Auswahlaxiom - Identische Abbildung - Komposition - Surjektivität - Urbild (Mathematik)


Beweisarchiv: Mengenlehre

Injektivität Surjektivität Bijektivität: Faktoren - Komposition - Linksinverse - Linkskürzbarkeit - Rechtsinverse - Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung - Kardinalität und Bijektionen - Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze - Distributivgesetze - Differenzgesetze - Grundeigenschaften der Inklusion - De Morgansche Regeln für Mengen
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element - Elemente von Ordinalzahlen sind Ordinalzahlen - Durchschnitte von Ordinalzahlen sind Ordinalzahlen - Wohlordnung der Klasse aller Ordinalzahlen - Ordinalzahlen bilden eine echte Klasse - Der Nachfolger einer Ordinalzahl ist Ordinalzahl - Vereinigungen von Ordinalzahlen sind Ordinalzahlen - Limes- und Nachfolgerzahlen - Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms - Wohlordnungssatz - Lemma von Zorn