Beweisarchiv: Mengenlehre: Ordinalzahlen: Elemente
Erscheinungsbild
- Charakteristikum unendlicher Mengen
- Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
- Verkettungen: Assoziativgesetz der Hintereinanderausführung
- Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
- Deskriptive Mengenlehre: Satz von Young
- Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
- Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
- Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn
Satz
[Bearbeiten]Elemente von Ordinalzahlen sind ihrerseits Ordinalzahlen.
Beweis
[Bearbeiten]Sei Ordinalzahl und . Sei . Per Transitivität von folgt und dann auch . Weder noch können das -minimale Element von sein, also folgt . Mithin ist transitiv. Da aus per Transitivität folgt, ist als Teilmenge einer wohlgeordneten Menge wohlgeordnet. Insgesamt ist also eine Ordinalzahl.