Zum Inhalt springen

Beweisarchiv: Mengenlehre: Mächtigkeiten (Kardinalzahlen): Potenzmenge

Aus Wikibooks

Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn


Mächtigkeit der Potenzmenge

[Bearbeiten]

Voraussetzung

[Bearbeiten]

sei eine beliebige Menge.

Behauptung

[Bearbeiten]

Beweis

[Bearbeiten]

Es sind die folgenden beiden Aussagen zu zeigen:

  1. Es gibt eine Injektion
  2. Es gibt keine Bijektion zwischen und

Zu 1. Die Zuordnung leistet das Verlangte.

Zu 2. Angenommen, irgendeine Abbildung wäre surjektiv. Dies wird nun zum Widerspruch geführt, womit auch gezeigt ist, dass es keine Bijektion zwischen den beiden Mengen gibt.

Die Teilmenge von wird definiert als . Da als surjektiv angenommen wurde, hat ein Urbild unter , also ein Element mit . Nun gilt:

(Die erste Äquivalenz beinhaltet die Definition von , die zweite Äquivalenz benutzt nur die Urbildeigenschaft.)

Damit ist der gewünschte Widerspruch vorhanden.

Wikipedia-Verweise

[Bearbeiten]

Injektivität - Mächtigkeit - Potenzmenge - Surjektivität


Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn