Beweisarchiv: Mengenlehre: Mengenoperation: Assoziativgesetz

Aus Wikibooks
Zur Navigation springen Zur Suche springen

Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn


Durchschnitt und Vereinigung[Bearbeiten]

Voraussetzung[Bearbeiten]

seien beliebige Mengen.

Behauptung[Bearbeiten]

Beweis[Bearbeiten]

Zwei Mengen sind genau dann gleich, wenn sie genau dieselben Elemente enthalten. Nun gilt

sowie

Die Gleichheit folgt also wegen der Assoziativität der logischen und-Verknüpfung, d.h. aus der Äquivalenz von und .

Die Aussage für die Vereinigung folgt entsprechend aus der Assoziativität der logischen oder-Verknüpfung.

Symmetrische Differenz[Bearbeiten]

Voraussetzung[Bearbeiten]

seien beliebige Mengen.

Behauptung[Bearbeiten]

Beweis[Bearbeiten]

Hier folgt die Gleichheit der Mengen aus der logischen Äquivalenz von und . Beide sind genau dann wahr, wenn genau eine oder alle drei Teilaussagen wahr sind. Der Beweis wird im Folgenden direkt für Mengen geführt. Für die symmetrische Differenz gilt:

Die letzten beiden Ausdrücke benutzt man in der folgenden Rechnung.

Dieser Ausdruck ist invariant unter Permutationen von . Daher gilt das Assoziativgesetz.

Mengendifferenz (Gegenbeispiel)[Bearbeiten]

Die Mengendifferenz ist nicht assoziativ, es gilt also im allgemeinen , wie ein einfaches Beispiel zeigt:

Wikipedia-Verweise[Bearbeiten]

Assoziativgesetz - charakteristische Funktion - Differenzmenge - Restklassenring - Schnittmenge - symmetrische Differenz - Teilmenge - Vereinigungsmenge


Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn