Zum Inhalt springen

Beweisarchiv: Mengenlehre: Mengenoperation: De Morgansche Regeln für Mengen

Aus Wikibooks

Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn


Sei eine Menge und seien Mengen für mit beliebiger Indexmenge . Dann gelten die folgenden Gleichungen:

Spezialfall

[Bearbeiten]

Seien drei Mengen. Dann gelten die beiden Gleichungen

(a) und
(b) .

Beweis

[Bearbeiten]

(1): Definition der mengentheoretischen Differenz

(2): Definition von

(3): Definition der Vereinigungsmenge

(4): Allaussage ist äquivalent zu verneinter Existenzaussage

(5): Definition der Schnittmenge

Analog gilt für den zweiten Teil:

Beweis des Spezialfalls

[Bearbeiten]

(a) Die Menge links des Gleichheitszeichens enthält alle Elemente von , die keine Elemente von oder sind, also . Die rechte Menge enthält alle Elemente, für die gilt also ebenfalls , und damit ist die Gleichheit gezeigt.
(b) Die Menge links des Gleichheitszeichens enthält alle Elemente von , die keine Elemente von und sind, also . Die rechte Menge enthält alle Elemente, für die gilt , also ebenfalls , womit die Gleichheit gezeigt ist