Beweisarchiv: Mengenlehre: Ordinalzahlen: Regularität

Aus Wikibooks
Wechseln zu: Navigation, Suche

Beweisarchiv: Mengenlehre

Injektivität Surjektivität Bijektivität: Faktoren - Komposition - Linksinverse - Linkskürzbarkeit - Rechtsinverse - Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung - Kardinalität und Bijektionen - Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze - Distributivgesetze - Differenzgesetze - Grundeigenschaften der Inklusion - De Morgansche Regeln für Mengen
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element - Elemente von Ordinalzahlen sind Ordinalzahlen - Durchschnitte von Ordinalzahlen sind Ordinalzahlen - Wohlordnung der Klasse aller Ordinalzahlen - Ordinalzahlen bilden eine echte Klasse - Der Nachfolger einer Ordinalzahl ist Ordinalzahl - Vereinigungen von Ordinalzahlen sind Ordinalzahlen - Limes- und Nachfolgerzahlen - Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms - Wohlordnungssatz - Lemma von Zorn


Satz[Bearbeiten]

Ordinalzahlen enthalten sich nicht selbst als Element.


Bemerkung: Dies wäre eine triviale Folgerung aus dem Fundierungsaxiom, welches hier aber nicht vorausgesetzt wird.

Beweis[Bearbeiten]

Sei Ordinalzahl. Für jedes Element gilt per Wohlordnung von genau eine der drei Beziehungen , , , wegen also . Aus der Annahme ergibt sich daher der Widerspruch .