Zum Inhalt springen

Beweisarchiv: Mengenlehre: Mengenoperation: Grundeigenschaften der Inklusion

Aus Wikibooks

Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn


Definition: „Inklusion“ bedeutet Teilmengenbeziehung.

(a) Die Inklusion ist transitiv, d. h. sind und , so ist auch .
(b) Es ist .
(c) Genau dann ist , wenn und gelten.

Beweis

[Bearbeiten]

(a) Alle Elemente von sind Elemente von und alle Elemente von sind Elemente von . Dies zeigt, dass auch alle Elemente von Elemente von sind.
(b) Für alle Elemente gilt und , somit ist eine Teilmenge von . Außerdem ist jedes Element von auch ein Element von und wir haben .
(c) Zu beweisen ist die Äquivalenz .
"": Dies ist klar.
"": heißt, dass alle Elemente von A auch in B sind und heißt, dass alle Elemente von B auch in A sind. Somit haben und die gleichen Elemente und wir haben .