MathemaTriX ⋅ Theorie. Klasse 8
| ||||||||||||||||||
Inhalt
Ein-Aus- klappen |
AUFGABEN | |
|
Vorgabe des Ministeriums
[Bearbeiten]Grundrechnungen
[Bearbeiten]Punktrechnungen mit 10, 100, 1000 und so weiter
[Bearbeiten]- Wenn man eine Zahl mit 10, 100, 1000 und so weiter multipliziert, dann verschiebt sich das Komma der Zahl einfach nach rechts (die Zahl wird größer), so oft, wie es Nullen gibt:
- 3,45 · 10 = 34,5 (Mal 10; in 10 gibt es eine Null, Komma wird einmal nach rechts verschoben)
- 54 · 10000 = 54,0000 · 10000 = 540000 (Mal 10000; in 10000 gibt es vier Nullen, Komma wird 4 Mal nach rechts verschoben; Allerdings gibt es kein Komma am Ende der Zahl 54; man schreibt ein Komma am Ende der Zahl und dazu nach dem Komma so viele Nullen, wie man will, und schiebt dann das Komma)
- 0,008 · 100 = 0,8 (Mal 100; in 100 gibt es 2 Nullen, Komma wird 2 Mal nach rechts verschoben)
- Wenn man eine Zahl mit 10, 100, 1000 und so weiter dividiert, dann verschiebt sich das Komma der Zahl einfach nach links (die Zahl wird kleiner), so oft, wie es Nullen gibt:
- 3,45:10 = 0,345 (Durch 10; in 10 gibt es eine Null, Komma wird einmal nach links verschoben; allerdings gibt es links vor 3,4 keine Null, man schreibt also links von der Zahl so viele Nullen, wie man will, und schiebt dann das Komma)
- 54:10000 = 0,0054 (Durch 10000; in 10000 gibt es 4 Nullen, Komma wird 4 Mal nach links verschoben; allerdings gibt es links vor 54 kein Komma, man schreibt also links von der Zahl ein Komma und so viele Nullen, wie man will, und schiebt dann das Komma)
- 0,008:100 = 0,00008 (Durch 10; in 10 gibt es eine Null, Komma wird 1 Mal nach links verschoben; allerdings muss man zuerst am Ende der Kommazahl weitere Nullen schreiben)
- 900000:100 = 9000,00 = 9000 (Durch 100; in 100 gibt es 2 Nullen, Komma wird 2 Mal nach links verschoben; da es kein Komma am Ende der Zahl gibt, muss man erst das Komma schreiben)
Darstellungen einer Zahl im Dezimalssystem
[Bearbeiten]Textaufgaben zu den Grundrechenarten
[Bearbeiten]Rechenart | Ausgedrückt als | Symbol | Namen der Teile | Name des Ergebnisses |
---|---|---|---|---|
Addition | plus | + | ||
(addieren, erhöhen) | Summand Summand | Summe | ||
Subtraktion | minus | − | ||
(subtrahieren, reduzieren, vermindern, abziehen) | Minuend Subtrahend | Differenz | ||
Multiplikation | mal | ⋅ (×) | ||
(multiplizieren, vervielfachen, -fach) | Faktor ⋅ Faktor | Produkt | ||
Division | durch | : (÷, /) | ||
(dividieren, teilen) | Dividend Divisor | Quotient |
Mit den Grundrechenarten kann man auch Textaufgaben bilden. Bei diesen Aufgaben ist in der Regel die Bedeutung der Wörter nicht so wichtig, wie der Aufbau des Satzes:
- Dividieren Sie die Differenz von 125 und 20 mit der Summe von 4 und 3.
Schauen wir mal, wie der Satz aufgebaut ist. Erst steht, dass man dividieren muss (also durch machen). Was muss man aber dividieren? Was steht nach dem Wort dividieren? Die Zahlen 125 und 20? NEIN! Nach dem Wort dividieren (durch machen) steht das Wort Differenz! Man muss also erst eine Differenz berechnen! Welche Differenz? Die Differenz von 125 und 20(was nach dem Wort Differenz steht)! Das steht ja auch da! Die Differenz (Minus) von 125 und 20 ist 125−20=105. Diese Differenz muss man durch irgendwas dividieren. Ist das durch 4, durch 3 oder doch was anderes? Doch was anderes! Die Differenz muss man mit der Summe (Plus machen) dividieren. Man muss also erst eine Summe berechnen, die Summe von 4 und 3 (was nach dem Wort Summe steht), 4+3=7. Man soll also die Differenz (105) durch die Summe (7) dividieren:
105:7=15. 15 ist also die Antwort zur Aufgabe!
Vorrang der Rechenarten
[Bearbeiten]Grundrechenartenvorrang
[Bearbeiten]:
- Wenn man von links nach rechts liest, dann: also Ergebnis 7.
- Wenn man von rechts nach links liest, dann: also Ergebnis 15.
Das Ergebnis ist nicht das Gleiche! In den meisten Sprachen der Welt fängt man links an. Dann ist das richtige (und eindeutige) Ergebnis 7. Nur bei Addition oder Multiplikation spielt die Leserichtung und allgemein die Reihenfolge keine Rolle:
In diesem Buch wird die Deutsche Leserichtung benutzt, also von links nach rechts.
Was ist, wenn man Strich- und Punktrechnungen gleichzeitig hat? Spielt hier die Reihenfolge wieder keiner Rolle, wie bei der Addition oder der Multiplikation?
Machen wir die Rechnung einfach von links nach rechts, ist das Ergebnis:
Ändern wir die Reihenfolge der Multiplikation:
und machen wir die Rechnung einfach von links nach rechts, bekommen wir ein anderes Ergebnis:
Es gilt auch:
- Wenn man erst die Strichrechnung macht, ist das Ergebnis:
- Wenn man erst die Punktrechnung macht, ist das Ergebnis:
Das Ergebnis ist wieder unterschiedlich.Ein unterschiedliches Ergebnis kommt auch dann vor, wenn die Reihenfolge bei der Addition geändert wird und die Multiplikation erst gemacht wird:
und
Hier haben wir die Reihenfolge bei der Addition geändert (einmal steht 2+3 und dann 3+2). Machen wir in beiden Fällen erst die Multiplikation:
und
Das Ergebnis ist wieder unterschiedlich. Wenn wir aber einen mathematischen Ausdruck haben, wollen wir ein eindeutiges Ergebnis. Damit das Ergebnis eindeutig ist, muss es eine Regel geben. In Mathematik haben die Punktrechnungen (mal und durch) immer Vorrang vor den Strichrechnungen (Plus und Minus). Man muss zuerst die Punktrechnungen machen und dann die Strichrechungen. Also ist hier 14 das richtige Ergebnis. Wenn es also in einer Rechnung Strich- und Punktrechnungen gibt, dann muss man zuerst die Punktrechnungen machen!
Wenn es aber eine Klammer gibt, dann muss man erst die Rechnung in der Klammer machen:
Hier ist das Ergebnis doch
...und hier ist das Ergebnis wieder .
Wenn in einem mathematischen Ausdruck mehrere Rechenarten vorkommen, dann muss eine Regel gelten, damit das Ergebnis eindeutig ist. Die grundlegende Regel lautet:
Klammer vor Punkt vor Strich.
(Zu Erinnerung: Punktrechnungen sind mal und durch, Strichrechnungen sind plus und minus)
Wenn es wiederum innerhalb einer Klammer mehrere Rechnungen gibt, dann muss man die Klammer erst machen und in der Klammer an die Regeln halten:
Unterstreichen wir zuerst die Rechnungen in den Klammern:
In beiden Klammern muss man zuerst die Punktrechnung machen | ||||||
und dann die Strichrechnung in Klammer | ||||||
Man kann also die Klammer durch das jeweilige Ergebnis ersetzen | ||||||
Kompakter geschrieben ist die Rechnung jetzt: |
Hier muss man erst die Punktrechnungen machen
Hier das Ganze noch einmal übersichtlicher und in einer Animation:
Alle Schritte kompakt dargestellt: |
Vorrang mit Klammern in Klammern
[Bearbeiten]In der großen Klammer hat die kleine Klammer Vorrang (Klammer vor Punkt vor Strich) | |||||||
↓ | In der kleinen Klammer erst Punkt und dann Strichrechnung | ||||||
↓ | 7 + | Kleine Klammer durch ihr Ergebnis in der großen Klammer ersetzen | |||||
+ | In den verbliebenen Klammern erst Punkt- und dann Strichrechnungen | ||||||
Man kann also die Klammer durch das jeweilige Ergebnis ersetzen |
(an Plus-Minus Regeln halten!)
(an Plus-Minus Regeln halten!)
Bruchrechnungen
[Bearbeiten]Doppelbrüche
[Bearbeiten]
Bruchrechnungen und Vorrang
[Bearbeiten]
Man muss zuerst die Klammern machen:
- Erste Klammer
Hier haben wir nur eine Strichrechnung und zwar mit dem gleichen Nenner.
- Zweite Klammer
Hier müssen wir erst die Punktrechnung machen und dann die Strichrechnung.
Hier soll man erst kürzen.
Jetzt kann man in der Rechnung die Ergebnisse für die Klammern einsetzen:
Textaufgaben zu den Bruchrechnungen
[Bearbeiten]- In einem Staat mit 8,46 Millionen Einwohner trinkt jeder Einwohner durchschnittlich vier Neuntel Liter Milch täglich.
-
- Wie viel Liter werden dann täglich konsumiert?
- Der Gewinn für die Eigentümer ist 0,8¢/Liter Milch. Wie viel ist der tägliche Gewinn? Finden Sie ihn gerechtfertigt?
- Im einem anderen Staat gibt es 4 Supermarktketten. Zusammen gewinnen die Eigentümer 105000€ täglich. Eigentümer A bekommt zwei Fünftel des Gewinns, Eigentümer B ein Drittel und den Rest teilen die anderen zwei Eigentümer C und D. Wie viel gewinnt täglich jeder Eigentümer? Finden Sie den Gewinn gerechtfertigt?
Aufgabe a lässt sich leicht berechnen:
Da der Gewinn pro Liter 0,8¢ ist, soll man 0,8 mit 3,76 Mil. multiplizieren (dann hat man ¢) und dann durch 100 dividieren (dann hat man €):
Ob dieser Gewinn gerechtfertigt ist, soll jeder für sich entscheiden (die Eigentümer werden ihn sicherlich gerechtfertigt finden, sonst würden sie ihn nicht machen...).
Aufgabe b ist ebenfalls nicht besonders schwer:
Eigentümer A:
Eigentümer B:
Eigentümer C und D teilen den Rest:
Primfaktorzerlegung Anwendungen
[Bearbeiten]Kürzen mit Primfaktorzerlegung
[Bearbeiten]
Hier sieht man sofort, dass man sowohl den Zähler als auch den Nenner durch 5 teilen kann. Was ist aber, wenn man große Zahlen hat? In diesem Fall ist es besser, die PFZ der Zahlen erst durchzuführen:
? |
6664 | 2 |
3332 | 2 |
1666 | 2 |
833 | 7 |
119 | 7 |
17 | 17 |
1 |
8820 | 2 |
4410 | 2 |
2205 | 3 |
735 | 3 |
245 | 5 |
49 | 7 |
7 | 7 |
1 |
Man schreibt Zähler und Nenner als Produkt von Primzahlen und kürzt den Bruch (also Primzahlen, die oben und unten vorkommen, werden gestrichen) |
Bruchstrichrechnungen mit Primfaktorzerlegung
[Bearbeiten]
Wir haben schon gesehen, wie man zwei Brüche addiert oder subtrahiert. Was ist es aber, wenn man mehrere Brüche hat? Man könnte selbstverständlich erst die zwei Brüche machen, das Ergebnis mit dem nächsten Bruch usw. Das kann lang dauern und Brüche mit sehr große Nennern als Ergebnis haben. Es gibt eine Methode, die schneller ist und die Primfaktorzerlegung (PFZ) benutzt. Schauen wir ein Beispiel an. In unserem Beispiel wandeln wir erst die gemischten Zahlen in „unechten“ Brüchen um:
Jetzt machen wir die PFZ der Nenner:
36 | 2 |
18 | 2 |
9 | 3 |
3 | 3 |
1 |
24 | 2 |
12 | 2 |
6 | 3 |
3 | 3 |
1 |
45 | 3 |
15 | 3 |
5 | 5 |
1 |
40 | 2 |
20 | 2 |
10 | 2 |
5 | 5 |
1 |
also:
36 = 2·2·3·3 |
24 = 2·2·2·3 |
45 = 3·3·5 |
40 = 2·2·2·5 |
Als nächstes sollen wir das sogenannte „kleinste gemeinsame Vielfache“ (kgV) bilden. Das geht so: Wir schauen welche Faktoren in den Nennern vorkommen. In unserem Fall sind es 2, 3 und 5. Dann schauen wir, wo jeder von diesen Faktoren am häufigsten vorkommt.
2 kommt in 36 zwei mal vor, in 24 drei mal vor, in 45 kein mal und in 40 wieder drei mal vor. Am häufigsten also kommt 2 drei mal vor (in 36 oder in 40, das spielt keine Rolle, wichtig ist, dass 2 am häufigsten in irgendeinem Nenner drei mal vorkommt). In diesem Fall müssen wir für das kgV die 2 drei mal benutzen.
3 kommt in 36 zwei mal vor, in 24 ein mal, in 45 zwei mal und 40 kein mal vor. Am häufigsten kommt 3 also zwei mal vor (in 36 oder in 45, wir benutzen also nur 36 oder nur 45, also die 3 zwei mal). In diesem Fall müssen wir für das kgV die 3 zwei mal benutzen.
5 kommt in 36 kein mal, in 24 auch kein mal, in 45 ein mal und 40 auch ein mal vor. Am häufigsten kommt 5 also ein mal vor (in 45 oder in 40, das spielt keine Rolle, wichtig ist, dass 5 am häufigsten in irgendeinem Nenner ein mal vorkommt). In diesem Fall müssen wir für das kgV die 5 ein mal benutzen.
Also die 2 kommt in kgV als drei mal Faktor vor, die 3 zwei mal und die 5 ein mal vor:
kgV=2·2·2·3·3·5=360
Für den nächsten Schritt gibt es verschiedene Wege, wir schreiben hier den Weg, den wir für den einfachsten halten. Unsere Rechnung nach dem ersten Schritt (gemischte Zahlen in unechten Brüchen umwandeln) ist jetzt:
Wir multiplizieren unser kgV jeweils mit dem Zähler und dividieren jeweils durch den Nenner für jeden Bruch. Die Ergebnisse schreiben wir in einem Zähler auf, mit den jeweiligen Strichrechnungen dazwischen. Im Nenner kommt das kgV (hier 360) vor. Also:
Für den ersten Bruch: 360⋅83:36=830
Für den zweiten Bruch: 360⋅85:24=1275
Für den dritten Bruch: 360⋅44:45=352
Für den vierten Bruch: 360⋅1:40=9
Diese vier Zahlen kommen im Zähler mit den jeweiligen Strichrechnungen dazwischen vor, im Nenner kommt das kgV vor. Im Zähler machen wir dann auch die Strichrechnungen:
In diesem Fall können wir den Bruch auch weiter kürzen (hier mit 6). Daher ist das Ergebnis:
Wiederholen wir das Ganze:
|
|
Textaufgaben Primfaktorzerlegung
[Bearbeiten]Teilbarkeit
[Bearbeiten]Für die Teilbarkeit durch 11 gibt es eine Regel: wenn die Differenz der alternierenden Summen der Ziffern einer Zahl 0 oder durch 11 teilbar ist, dann ist die Zahl auch durch 11 teilbar. Beispiel: 981607. Man nimmt die Summe der ersten, der dritten und der fünften (alternierend) Ziffer 9+1+0= 10 und die Summe der zweiten, der vierten und der sechsten (alternierend) Ziffer 8+6+7=21. Die Differenz der beiden Summen ist 21-10=11, was durch 11 teilbar ist. Daher ist auch 981607 durch 11 teilbar!
Binäre Zahlen
[Bearbeiten]Schluss und Prozentrechnung
[Bearbeiten]Schlussrechnung (Dreisatz)
[Bearbeiten]Direkte Proportionalität
[Bearbeiten]Fangen wir direkt mit einem Beispiel an.
- 5 Tische kosten 315€. Wie viel kosten 2 Tische?
Hier spricht man von einer sogenannten direkte Proportionalität. Weniger Tische werden weniger Geld kosten. Das Beispiel besteht aus zwei Sätze:
- was gegeben ist: „5 Tische kosten 315€“. Diese Daten schreibt man auf ein Zeile nebeneinander. Man schreibt also am Anfang:
- 5 Tische ... 315€
- was gefragt ist: „Wie viel kosten 2 Tische?“ Hier ist der Preis der Tische in € gefragt. Man schreibt eine zweite Zeile unter die erste: Dabei schreiben wir das Gefragte (Preis der Tische) als x und die Anzahl der Tische unter der Anzahl Tische von der ersten Zeile:
- 5 Tische ... 315€
- 2 Tische ... x
Man fängt mit der gefragten Größe an (hier €), also mit der Zahl, die an der gleichen
Spalte mit x steht, und multipliziert diese Zahl mit der Zahl schräg gegenüber.
315·2=630.
Das Ergebnis dividiert man mit der verbliebenden Zahl (hier 5).
630:5=126
Jetzt kommt die Frage: 126 was? Was haben wir hier gerechnet? Sicherlich nicht Frösche und auch nicht Äpfel. Wie kann man herausfinden, was hier gerechnet wurde? Eine Möglichkeit ist es, die folgende Frage zu stellen: „Wieviel kosten 2 Tische?“ Kosten sind gefragt, also €. Das Ergebnis ist daher der Wert in €. Ein anderer Weg ist es darauf zu schauen, wo x steht: Es steht unterhalb von „315€“. Wir haben gesagt, dass in jeder Spalte die Sachen (in Mathematik „Einheiten“ genannt) übereinstimmen müssen. Unterhalb von € müssen € stehen. Daher sollte die Einheit von x auch € sein. Somit ist die Antwort:
„Zwei Tische kosten 126€.“
Der ganze Prozess noch einmal Schritt für Schritt:
Noch ein Beispiel:
3,5 Liter eines Stoffes wiegen 14,7 kg.
- a) Wie viel wiegen 0,0175 Liter?
- b) Wie viel Liter sind 3850kg?
Hier gibt es zwei Fragen, das gegebene ist aber in beiden Fällen das gleiche, nämlich der erste Satz.
- a) Für die erste Frage schreiben wir das gegebene an einer Zeile und das gefragte darunter (gleiche Sachen unter gleichem):
|
Die Zahl, die an der gleichen Spalte mit x steht, mal die Zahl schräg gegenüber und durch die andere Zahl: |
Noch einmal stellt sich die Frage: 0,735 was? Was haben wir hier gerechnet? Wieso haben wir kg geschrieben? Die Frage war „Wie viel wiegen 0,0175 Liter?“ Also muss die Einheit vom Ergebnis kg sein. Wenn wir die Schlussrechnung betrachten, sehen wir ebenfalls, dass x unterhalb von „14,7 kg“ steht. In einer Spalte müssen die Einheiten übereinstimmen, unterhalb von kg müssen gleichfalls kg stehen. Somit ist die Antwort:
„0,0175 Liter des Stoffes wiegen 0,735kg.“
- b) Für die zweite Frage schreiben wir wieder das gegebene in einer Zeile und das gefragte darunter (gleiche Sachen (Einheiten) unter gleiche):
Ob man die Liter links oder rechts schreibt oder das gegebene oben oder unten, spielt keiner Rolle. Wichtig ist: das Gegebene in einer Zeil und gleiche Sachen (Einheiten) in der gleichen Spalte!
In diesen Aufgaben ist es wichtig zu verstehen: Man braucht nicht wissen, was die Wörter bedeuten! Man soll einfach die Struktur der Sätze der Aufgabe verstehen!
Indirekte Proportionalität
[Bearbeiten]- 3 Arbeiter brauchen 15 Stunden, um ein Haus mit Fliesen zu verlegen. Wie viel Zeit brauchen dann 5 Arbeiter?
1 Arbeiter würde in diesem Fall mehr Zeit brauchen. Es gibt für einen Arbeiter viel mehr Boden zu verlegen, wenn er alleine arbeitet. Also weniger Arbeiter brauchen mehr Zeit. Das ist also KEINE direkte sondern eine indirekte Proportionalität.
Wie bei der direkten Proportionalität schreibt man hier auch die gegebenen Größen nebeneinander und gleiche Größen untereinander.
In diesem Fall multipliziert man mit der Zahl gerade gegenüber (und NICHT schräg gegenüber, wie in der direkten Proportionalität) und dividiert dann durch die andere Zahl:
(die die Arbeiter in diesem Fall brauchen).
Um zu unterscheiden, ob man eine direkte oder indirekte Proportionalität hat, muss man schon die Sprache und die Zusammenhänge gut verstehen können!
Vergleich direkter und indirekter Proportionalität
[Bearbeiten]
|
|
Bei beiden Vorgängen fängt man dann mit der Zahl an, die nur an der gleichen Spalte mit x steht (hier 14,7 kg in der direkten und 15 Stunden in der indirekten Proporionalität). Der Unterschied ist: bei der direkten Proportionalität geht man dann schräg, bei der indirekten gerade gegenüber, und multiplitiert mit dieser Zahl (hier 0,0175 Liter in der direkten und 3 Arbeiter in der indirekten Proporionalität). Am Ende dividiert man in beiden Fällen mit der übriggebliebenen Zahl (hier 3,5 Liter in der direkten und 5 Arbeiter in der indirekten Proporionalität).
|
|
Wie kann man verstehen, ob eine direkte oder eine indirekte Proportionalität vorliegt?
Nehmen wir den folgenden Bruch b: , wobei z der Zähler und n der Nenner ist. Wenn z=20 und n=5 ist, dann ist der Bruch b=4: . Wenn jetzt der Zähler z größer wird (z.B. z=30), dann wird der ganze Bruch b auch größer: . Wenn der Zählerz kleiner wird (z.B. z=10), dann wird der ganze Bruch auch kleiner: . Je größer der Zähler, desto größer der Bruch. Je kleiner der Zähler, desto kleiner der Bruch. Diesen Zusammenhang nennt man direkte Proportionalität.
Wenn jetzt der Nenner größer wird (z.B. n=10), dann wird der ganze Bruch das Gegenteil, also kleiner:
Wenn der Zähler z=20 und der Nenner n=5 ist, dann ist der Bruch b=4: . Wird der Nenner n größer, z.B. 10, dann wird der Bruch b kleiner: . Wenn der Nenner kleiner wird (z.B. n=2), dann wird der ganze Bruch das Gegenteil, also größer: . Je größer der Nenner, desto kleiner der Bruch. Je kleiner der Nenner, desto größer der Bruch. Diesen Zusammenhang nennt man indirekte Proportionalität.
Wenn zwei Größen (z.B. Volumen und grob gesagt Gewicht[1]) gleichzeitig wachsen oder gleichzeitig weniger werden, dann liegt eine direkte Proportionalität vor (z.B. wenn man mehr Wasser hat, ist sowohl das Volumen als auch das Gewicht mehr). Wenn das Wachstum einer Größe zur Verminderung einer anderen führt, dann liegt eine indirekte Proportionalität vor (z.B. mehr Arbeiter brauchen weniger Zeit, um die gleiche Arbeit zu erledigen). So kann man verstehen, ob man direkte oder indirekte Proportionalität benutzen soll. Beim nächsten Kapitel allerdings (Prozentrechnung) kommt nur die direkte Proportionalität vor!
- ↑ in der Physik soll man Masse sagen
Prozentrechnung
[Bearbeiten]Prozentrechnung allgemein
[Bearbeiten]Prozentrechung Begriffe
[Bearbeiten]Grundaufgaben der Prozentrechnung
[Bearbeiten]- Wie viel % von 55 Personen sind 11 Personen?
Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier ist der Prozentsatz eines Teils von 55 Personen gefragt. 55 Personen sind 100%. (Nach dem Wort „von“ steht der Wert, der 100% ist). Wir schreiben das so auf, wie wir es in der Schlussrechnung (genauer in der direkten Proportionalität) gelernt haben:
.
- Wie viele Personen sind 11% von 55 Personen?
Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier ist ein Prozentsatz von 55 Personen gefragt, also haben wir am Anfang 55 Personen, die dann 100% sind! (Also nach dem Wort „von“ steht der Wert, der 100% ist). Wir schreiben das auf, wie wir es in der Schlussrechnung (genauer in der direkten Proportionalität) gelernt haben:
.
- Wie viel % von 23 kg sind 5329kg?
Hier steht nach „von“ 23 kg, also sind 23kg 100%
.
- Wie viel ist 0,3% von 0,26 Liter?
.
- Von wie vielen Personen sind 55 Personen 11%?
Hier steht nach dem Wort „von“ eine Frage. Das Gefragte schreibt man in der Mathematik mit x. Daher ist x 100%. Das Gefragte ist 100%.
.
Prozentrechnung bei Wachstum oder Zerfall
[Bearbeiten]Umkehraufgaben der Prozentrechnung
[Bearbeiten]- Man hat in seinem Haus ein neues Zimmer aufgebaut. Die Fläche des Hauses ist dadurch um 15% auf 112,7m² gewachsen. Berechnen Sie die ursprüngliche Fläche!
Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier wissen wir nicht, wie groß das Haus am Anfang war, das ist doch gefragt! Das gefragte schreibt man in Mathematik mit x. 100% ist also x. Das Haus ist um 15% gewachsen, also die Fläche am Ende (112,7m²) ist 100%+15%=115%. Daher sind 112,7m² 115%.
Schreiben wir diese Information auf, wie wir das gelernt haben:
.
- Ein Tisch wurde um 10% geschnitten. Die neue Länge ist 2,7m. Berechnen Sie die ursprüngliche Länge!
Der Wert am Anfang (das „Ganze“) ist immer 100%. Er ist aber nicht gegeben. Daher ist x 100%. Der Tisch wurde um 10% geschnitten, war am Anfang 100%, daher bleibt noch 100%-10%=90%. 2,7m (der Wert am Ende) sind daher 90%. Schreiben wir das Ganze auf:
.
Erklärung der Prozent und Schlussrechnung
[Bearbeiten]Wie schon betont, bedeutet "ein Prozent" das gleiche wie ein Hundertstel. Ein Hundertstel ist ein Bruch.Für die Erklärung der Prozentrechnung kann man daher die Bruchrechnung benutzen, genauer gesagt das Erweitern von Brüchen.
Wenn wir wissen wollen, wie viel Prozent von 5kg 3kg sind, können wir mit der Darstellung von 5kg anfangen:
Drei kg kann man dann als Bruchteil von diesen 5kg darstellen, wie im folgenden Bild:
Wenn jemand das Ganze senkrecht auf 20 teilt, ist jeder kleiner Teil ein Hundertstel. Im Bild kann man schon sehen, dass die drei fünftel solche kleine Teile sind, also 60 Hundertstel, also 60%:
Wenn wir jetzt mit Brüchen arbeiten, können wir durch die Bilder leicht verstehen, dass wir den Bruch mit der Zahl 20 erweitert haben:
Wie sind wir auf die Zahl 20 gekommen? Wir haben einfach 100 durch 5 dividiert, also durch die Zahl, die den Wert des Ganzen darstellt. Wieso ist 5 das Ganze? Wir haben schon in den Definitionen gesagt, dass das Ganze nach dem Wort "von" steht, also hier die 5 kg. So wie wir die Prozentrechnung gelernt haben, bedeutet das, dass man mit der Zahl quer gegenüber multiplizieren muss und durch die andere Zahl dividieren:
3 kg sind daher 60% (also 60 Hundertstel) von 5 kg.
Schauen wir jetzt ein Beispiel mit Zahlen, die nicht so "rund" sind:
Wie viel Prozent von 17 Äpfel sind 230 Äpfel?
Hier ist das Ganze die 17 Äpfel, also was nach dem Wort "von" (also in Genitiv) steht. Welcher Anteil von 17 Äpfel sind 230 Äpfel?
Diesen Bruch müssen wir so erweitern, damit im Nenner am Ende 100 steht:
Der Nenner hier wird tatsächlich 100 sein (es gilt: ). Somit haben wir:
da hundertstel genau Prozent bedeutet.
Wir haben in diesem Fall tatsächlich die Prozentrechnung mit Hilfe der Schlussrechnung durchgeführt, so wie wir das gelernt haben:
230 Äpfel sind daher ca. 1352,94% von 17 Äpfel.
Was ist, wenn man 17% von 35 Stunden berechnen will?
17% bedeutet 17 Hundertstel. Wir müssen 35 Mal die 17 Hundertstel nehmen. Anders gesagt teilen wir die 35 Stunden in Hundert Teile und nehmen 17 davon:
17% von 35 Stunden sind daher 5,95 Stunden.
Das ist wieder genauso, wie wir den Prozess mit Schlussrechnung gelernt haben:
Ähnlich denkt man bei der Schlussrechnung (genauer: bei der direkten Proportionalität). Nehmen wir folgendes Beispiel:
3,5 Liter eines Stoffes wiegen 14,7 kg.
- a) Wie viel wiegen 175 Liter?
- b) Wie viel Liter sind 3850kg?
Für die erste Frage denkt man erst, wie viel ein Liter wiegt. Man soll also 14,7 kg durch 3,5 dividieren, um zu finden, wie viel jedes Liter wiegt. Das ist als ob man eine Schokolade hätte und wissen wollte, wie viel jedes Teil wiegt.
4,2 kg wiegt jedes Liter des Stoffes.
175 Liter wiegen dann 735 kg:
Als Schlussrechnung:
In der zweiten Frage muss man erst finden, wie viel Volumen ein kg hat:
Ca. 0,238 Liter ist jedes kg des Stoffes.
Das Volumen von 3850 kg ist dann ca. 917 Liter:
Nochmal als Schlussrechnung:
Bei der indirekten Prportionalität muss man ein bisschen anderes denken:
- 3 Arbeiter brauchen 15 Stunden, um ein Haus mit Fliesen zu verlegen. Wie viel Zeit brauchen dann 5 Arbeiter?
1 Arbeiter würde in diesem Fall mehr Zeit brauchen. Es gibt für einen Arbeiter viel mehr Boden zu verlegen, wenn er alleine arbeitet. Also weniger Arbeiter brauchen mehr Zeit. Wie wir schon im entsprechenden Kapitel erklärt haben, ist das keine direkte sondern eine indirekte Proportionalität. Man muss in diesem Fall herausfinden, wie viel Zeit ein Arbeiter braucht. Ein Arbeiter wird die Arbeit von allen anderen erledigen müssen und jede der 3 Arbeiter braucht 15 Stunden. Einer Arbeiter braucht daher 45 Stunden:
Wenn jetzt diese Arbeit auf 5 Arbeiter aufgeteilt wird, wird jeder ein fünftel der Arbeit erledigen müssen. Wenn alle zusammen arbeiten, dann wird die Arbeit 9 Stunden dauern:
In diesem Fall muss man also direkt gegenüber multiplizieren, wie wir das gelernt haben:
Kombinationsaufgaben der Prozentrechnung
[Bearbeiten]
- Die Produzenten eines Filmes hatten vor dem Schnitt 5 Stunden Material. Beim ersten Schnitt haben Sie 70% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 20% länger (als der geschnittene Film) Version gemacht. Berechnen Sie die Dauer der letzten Version!
Der Wert ganz am Anfang (100%) ist hier gegeben (5 Stunden). Das wurde um 70% geschnitten, es bleiben also 100-70=30%. Schreiben wir diese Information auf:
Stunden.
Der Film war dann den Produzenten doch zu kurz. Diesen geschnittenen Film (also die 1,5 Stunden) haben sie dann um 20% verlängern. Diese 1,5 Stunden sind daher der neue Anfangswert, also 100%! Der Wert am Ende ist daher 100+20=120% von 1,5 Stunden (vom geschnittenen Film):
Stunden.
*Die Produzenten eines Filmes hatten vor dem Schnitt zu viel Material. Beim ersten Schnitt haben Sie 80% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 15% längere (als der geschnittene Film) Version gemacht. Die letzte Version dauert 1,61 Stunden. Berechnen Sie die ursprüngliche Dauer, also die Dauer des ungeschnittenen Films!Das hier ist eine Kombination von zwei Umkehraufgaben. Die letzte Version dauert 1,61 Stunden. Sie ist um 15% länger als die erste geschnittene Version. In diesem Fall haben wir am Anfang die geschnittene Version, diese ist also 100% und wurde um 15% auf 1,61 Stunden verlängert. 1,61 Stunden sind daher 115%, der Wert am Anfang (100%) ist noch unbekannt:
Stunden.
Der Schnitt ist 1,4 Stunden nachdem er geschnitten wurde. Die Dauer am Anfang (100%), vor dem Schnitt, ist noch unbekannt. 80% wurden geschnitten, also 100-80=20% sind nach dem Schnitt geblieben. Nach dem Schnitt (80%) war der Film 1,4 Stunden:
Stunden.
Das Filmmaterial am Anfang (die ursprüngliche Dauer) war daher 7 Stunden!
Prozentrechnung für Fortgeschrittene
[Bearbeiten]Es gibt einen viel schnelleren Weg um Aufgaben mit Prozentrechnung zu lösen. Nehmen wir die zwei Aufgaben aus dem letzten Kapitel.
- Die Produzenten eines Filmes hatten vor dem Schnitt 5 Stunden Material. Beim ersten Schnitt haben Sie 70% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 20% längere (als der geschnittene Film) Version gemacht. Berechnen Sie die Dauer der letzten Version!
Die Dauer nach dem Schnitt ist 100%-70%=30%. Wie am Anfang des Kapitels über Prozentrechnung erwähnt, 30% ist 0,3 ().
Wenn der Anfangswert gegeben ist, muss man mit dem Prozentsatz (als Zahl, also nicht 30, was %, also Hundertstel, ist, sondern 0,3) multiplizieren:
5·0,3=1,5 (Stunden).
Den nächsten Schritt kann man genauso machen. Nach 20% Erhöhung (aufpassen: des geschnittenen Films) haben wir .
1,5·1,2=1,8 (Stunden).
Das ganze kann man sogar in einem Schritt berechnen:
5·0,3·1,2=1,8 (Stunden).
Betrachten wir noch einmal den ersten Schritt. Wir wollen wissen, wie viele Stunden 30% von 5 Stunden sind. 30% bedeutet . Man soll daher die 5 Stunden in 100 teilen und 30 Teile davon nehmen:
(Stunden)
Der Anfangswert (Grundwert) wird daher mit 0,3 multipliziert.
Das kann man auch feststellen, wenn man die Schlussrechnung wie bisher gelernt durchführt:
.
Aber 1,5 in der letzten Rechnung ist so viel wie 5·0,3, wie man in der ersten Rechnung sehen kann. Daher kann man in der letzten Berechnung schreiben:
Die Schlussrechnungen können durch eine einfache und schnelle Multiplikation ersetzt werden!
In der Umkehraufgabe soll man die Gegenrechnung der Multiplikation benutzen, also die Division.
- Die Produzenten eines Filmes hatten vor dem Schnitt zu viel Material. Beim ersten Schnitt haben Sie 80% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 15% längere (als der geschnittene Film) Version gemacht. Die letzte Version dauert 1,61 Stunden. Berechnen Sie die ursprüngliche Dauer, also die Dauer des ungeschnittenen Films!
1,61:1,15:0,2=7 (Stunden)
Schon fertig!
Man kann auch so denken:
x⋅0,2⋅1,15=1,61 |:1,15:0,2
x=1,61:1,15:0,2=7 (Stunden)
Wenn der Wert am Ende (der Prozentanteil) gegeben ist, muss man durch den Prozentsatz (als Zahl) dividieren.
Umsatzsteuer (USt.) und Rabatt
[Bearbeiten]Umsatzsteuer (USt.)
[Bearbeiten]
. |
|
Die Ware wird also um 3,52€ verkauft. Diesen Preis nennt man Bruttoverkaufspreis (BVP). Die 3,2€ (den Preis ohne Steuer) nennt man Nettoverkaufspreis (NVP). Die USt. in dieser Aufgabe ist 10% des Nettoverkaufspreises:
.
Es gilt offenbar, sowohl was dem Preis als auch was dem Prozentsatz betrifft:
|
(in diesem Beispiel: 3,52=3,2+0,32 und 110%=100%+10%) |
Rabatt
[Bearbeiten]
. |
|
Der Rabatt in diesem Fall ist 6% des Preises vor dem Rabatt:
.
Es gilt offenbar, sowohl was dem Preis als auch was dem Prozentsatz betrifft:
|
(in diesem Beispiel: 3,31=3,52-0,21 und 94%=100%−6%) |
- ↑ Hier wird der Rabatt auf den Listenpreis für den Endkunden berechnet, der die USt. enthält. Anfangswert wird daher bei den folgenden Berechnungen der Bruttoverkaufspreis sein. In der Schulmathematik wird i.d.R. Rabatt genau so definiert. Das ist allerdings nicht immer der Fall bei der kaufmännischen Mathematik.
USt. und Rabatt Gegebener Anfangswert
[Bearbeiten]- Der Nettoverkaufspreis einer Ware ist 65€. Berechnen Sie den Verkaufspreis nach einem 12% Rabatt, wenn die USt. 12% ist.
Die Aufgabe kann man in zwei Schritten lösen. Erst den Bruttoverkaufspreis berechnen (Der Bruttoverkaufspreis, also der Preis nach USt. ist 12% mehr also 100+12=112%):
Das ist der Bruttoverkaufspreis.
Dann kann man den Preis nach dem Rabatt berechnen. Der Preis nach dem Rabatt wird 12% weniger sein, also 100%-12%=88%.
Das ist der Preis nach dem Rabatt (PNR).
VORSICHT:
Wenn man Brutto- (BVP) und Nettoverkaufspreis (NVP) vergleicht (und USt. berechnet) ist nicht der Brutto- sondern der Nettoverkaufspreis der Grundwert (100%)
Wenn man aber Bruttoverkaufspreis (BVP) und Preis nach Rabatt (PNR) vergleicht, ist der Bruttoverkaufspreis doch der Grundwert (100%):
Bemerkung Erhöhen und Reduzieren um den gleichen Prozentsatz
[Bearbeiten]Wie man in der letzten Aufgabe feststellen kann, wenn man den Preis um 12% erhöht und dann wieder um 12% vermindert, ist der Preis am Ende nicht gleich dem Preis am Anfang! Warum passiert das? Weil wir zwei unterschiedlichen Anfangswerte haben! Erst haben wir den Nettoverkaufspreis als Anfangswert (100%) und den Bruttoverkaufspreis als Endwert (112%). Dann ist aber der Bruttoverkaufspreis der Anfangswert (100% und nicht mehr 112%) und der Endwert der Preis nach dem Rabatt (88%).
Das ganze kann man auch wieder in einem Schritt berechnen:
65€·1,12·0,88≈64,06€ !
Man muss also immer aufpassen, welcher der Anfangswert ist!
USt. und Rabatt Gegebener Endwert
[Bearbeiten]Der Preis nach dem Rabatt (56,1€) ist 100%-15%=85%. Vor dem Rabatt (100%) ist er daher:
Das ist der Bruttoverkaufspreis.
Der Bruttoverkaufspreis nach 10% USt. ist 66€. Das ist also 110%. Der Nettoverkaufspreis (Anfangswert) ist 100% und gesucht!
Das ist der Nettoverkaufspreis.
Das ganze kann man selbstverständlich auch in einem Schritt berechnen:
56,1€:0,85:1,1=60€
Warum gibt es Steuer?
[Bearbeiten]Der Staat verlangt für jede verkaufte Ware und für jede erbrachte Leistung Steuer. Mit diesem Steuergeld werden (im Idealfall) die verschiedenen Leistungen, die der Staat anbietet, finanziert (z.B. Schule, Polizei, Armee, Krankenhäuser).
Runden
[Bearbeiten]Grundregeln des Rundens
[Bearbeiten]Das Quadrat von 7 ist 49 und daher ist die Wurzel von 49 gleich 7 (sie sind Gegenrechnungen). Was ist aber mit der Wurzel von 7? Wenn man die Rechnung mit einem einfacheren Taschenrechner macht, kommt das folgende Ergebnis vor:
2,6457513110645905905
Das bedeutet, dass das Quadrat von 2,6457513110645905905 (die Gegenrechnung) 7 sein sollte. Wenn man aber mit dem Taschenrechner die Rechnung macht:
2,6457513110645905905² = 2,6457513110645905905 · 2,6457513110645905905
kommt 6,99999999999999999999 als Ergebnis heraus, was zwar fast 7 ist, aber nicht genau 7.
Man spricht in diesem Fall vom Runden. Der Taschenrechner gibt beim Wurzelziehen ein Ergebnis an, das nicht genau ist. Das genaue Ergebnis hat unendlich viele Nachkommastellen. Es ist unmöglich die Wurzel von 7 mit einer Kommazahl ganz genau zu bestimmen. Die einzige Weise die Wurzel von 7 genau anzugeben, ist zu schreiben!
Wie genau das Ergebnis mit Kommastellen ist, hängt vom Taschenrechner ab. Jeder Taschenrechner kann eine bestimmte Anzahl von Nachkommastellen berechnen. Die Wurzel aus 7 mit einer Kommazahl genau anzugeben ist aber nicht möglich.
Der Taschenrechner gibt ein Ergebnis an, das so nah wie möglich zum tatsächlichen Wert von ist und so viele Nachkommastellen hat, wie der Taschenrechner berechnen kann. In der Anzeige des Taschenrechners stehen sogar oft weniger Stellen (wieder gerundet) als die Stellen, die der Taschenrechner berechnen kann[1].
Das Runden ist in solchen Fällen unvermeidbar und oft notwendig und sinnvoll. Stellen wir uns vor, dass ein Produkt 6€ kostet. In einer Sonderaktion wird allerdings ein Rabatt 17% gewährt. In diesem Fall ist der Preis nach dem Rabatt:
6 ⋅ 0,83 = 4,938€
Hier muss man wieder runden. Die Münze mit dem kleinsten Wert ist 1¢ (0,01€). So was wie 0,008€ kann man nicht in Bar bezahlen. Man kann auch nicht genau 4.938€ bezahlen. Man muss auf zwei Nachkommastellen runden:
4,938€ ≈ 4,94€
Warum haben wir hier 4,94 und nicht 4,93 geschrieben?
4,938 liegt näher bei 4,94 als bei 4,93.
Wenn man rundet, rundet man auf (also eins nach oben), wenn die nächste Ziffer 5 oder mehr ist. Man rundet ab (also die Ziffer bleibt die gleiche), wenn die nächste Ziffer weniger als 5 ist:
5,6873729 ≈ 5,69 5,6873729 ≈ 5,687373
5,6873729 ≈ 5,68737 5,6873729 ≈ 5,687 8,785 ≈ 8,79
Im letzten Beispiel sehen wir, dass aufgerundet wird, wenn die nächste Ziffer 5 ist. 8,785 rundet man auf 8,79. Die nächste Ziffer von ist 5, daher wird aufgerundet. Diese Art vom Runden von 5 wird „kaufmännische“ Rundung genannt und wird in der Schule benutzt. Dieser Art der Rundung von 5 kann allerdings zu Probleme führen, besonders in der Statistik. Daher gibt es auch andere Regeln, wie man rundet, wenn die nächste Stelle eine einzige 5 ist.[2]
Wie viele Nachkommastellen muss man schreiben? Das ist vom Problem abhängig.
Die Ziffern ohne die Nullen zu Beginn oder am Ende der Zahl nennt man gültige Ziffern.
Es kann sein, dass bei einer Aufgabe festgelegt wird, auf wie viele Stellen gerundet wird:
Aufgabe: Runden auf drei (gültige) Stellen (oder in diesem Beispiel auf zwei Nachkommastellen)
5,6873729 ≈ 5,69
Aufgabe: Runden auf sieben Stellen (oder in diesem Beispiel auf sechs Nachkommastellen)
5,6873729 ≈ 5,687373
Aufgabe: Runden auf sechs Stellen (oder in diesem Beispiel auf fünf Nachkommastellen)
5,6873729 ≈ 5,68737
Aufgabe: Runden auf vier Stellen (oder in diesem Beispiel auf drei Nachkommastellen)
5,6873729 ≈ 5,687
Aufgabe: Runden auf zwei (gültige) Stellen[3] (oder in diesem Beispiel auf vier Nachkommastellen)
0,002356 ≈ 0,0024
Wenn es keine Angabe über die gültigen Ziffern gibt, schreibt man nicht mehr als 5 oder 6 gültigen Ziffern insgesamt (also samt Ziffer vor dem Komma), beispielsweise:
895,76038≈895,760 0,007854309826≈0,00785 9874086973≈9874100000
In manchen Fällen sollte es von der Aufgabe klar sein, wie vielen gültige Stellen zu erwarten sind. Ein solchen Beispiel haben wir schon mit dem € gesehen.
Ein anderes Beispiel ist, wenn man ein Messband benutzt, um einen Abstand zu messen. Ein Messband kann nur bis mm messen und nichts kleineres. Wenn der gemessene Abstand 145cm ist und ihn in 7 teilt, kann das Ergebnis nur eine Nachkommastelle haben (mm).
Wenn man die Zeit mit einem elektronischen Stoppuhr misst, zeigt diese oft Nachkkommastellen nach der Sekunde, z.B. 6,463s. Das ist wieder völlig daneben, da die Reaktionszeit des Menschen mehr als 0,1s ist. Man kann also mit einer Stoppuhr, die mit der Hand betrieben wird, nicht genauer als eine Nachkommastelle nach der Sekunde messen. Die restlichen Nachkommastellen führen zum falschen Eindruck, dass man doch so genau (mit drei Nachkommastellen) messen kann.
Hier kann man auch erklären: Eine Zahl ändert sich nicht, wenn man eine oder mehrere Nullen vor der ersten Ziffer oder nach der letzten Nachkommastelle hinzufügt:
7,34 = 007,34 = 7,340 = 7,34000 = 000007,34000000
8888 = 8888,0000 = 0008888
- ↑ Ferner rechnet ein Taschenrechner auch anders als ein typischer Heimcomputer oder ein Notebook. So kann sich zwischen derartigen Geräten ebenfalls ein Unterschied ergeben. Zudem kann es bei solchen Geräten Optionen geben, selbst festzulegen, auf wie viele Stellen ein Ergebnis berechnet werden soll.
- ↑
Bei der sogenannten kaufmännischen Rundung wird auch bei 5 aufgerundet, was insbesondere bei Verkaufsgeschäften mit kleinen Beträgen dem Händler zugute kommt, wenn dieser viele ähnliche Geschäfte macht, daher vermutlich auch der Name.
Um das zu verstehen, stelle man sich viele zufällige Zahlen vor, die gerundet werden sollen. Einmal wird die Summe aller Zahlen vor der Rundung berechnet, nennen wir diese Summe V (vor der Rundung). Anschließend wird die Summe aller Zahlen nach der Rundung berechnet, nennen wir diese Summe N (nach der Rundung).
Man wird feststellen, dass N größer oder gleich V sein wird, was daran liegt, dass bei dieser Methode bei 5 immer aufgerundet wird.
Um das zu vermeiden, gibt es ein besseres Rundungsverfahren, bei dem es zwei Möglichkeiten gibt. Im Falle von 5 wird bei der einen Möglichkeit immer so gerundet, dass die letzte Ziffer gerade ist. Bei der anderen Möglichkeit wird bei 5 immer so gerundet, dass die letzte Ziffer ungerade ist. Man entscheidet sich bei einer Aufgabe der Rundung vieler Zahlen anfangs einmalig für eine der beiden Möglichkeiten und bleibt daraufhin dabei.
Bildet man wieder die Summenprobe, wird man feststellen, dass es Zufall ist, ob V oder N größer ist oder beide sogar gleich sind.
Man sagt: Das Verfahren ergibt keine systematischen Abweichungen.
Beispiel zur Rundung hin zur geraden Ziffer:
8,775 ergibt auf drei Stellen gerundet 8,78
8,765 ergibt auf drei Stellen gerundet 8,76
8,755 ergibt auf drei Stellen gerundet 8,76
0,125 ergibt auf zwei Stellen gerundet 0,12
0,135 ergibt auf zwei Stellen gerundet 0,14
0,145 ergibt auf zwei Stellen gerundet 0,14
Entsprechend zur Rundung hin zu ungeraden Ziffern:
8,775 ergibt auf drei Stellen gerundet 8,77
8,765 ergibt auf drei Stellen gerundet 8,77
8,755 ergibt auf drei Stellen gerundet 8,75
0,125 ergibt auf zwei Stellen gerundet 0,13
0,135 ergibt auf zwei Stellen gerundet 0,13
0,145 ergibt auf zwei Stellen gerundet 0,15
Welches Rundungsverfahren anzuwenden ist, hängt davon ab, in welchem Zusammenhang gerechnet wird (kaufmännisch, wissenschaftlich, statistisch). - ↑ (0 zählt hier am Anfang der Zahl bei der Anzahl gültiger Stellen nicht mit)
Aufrunden von 9
[Bearbeiten]Wenn die Ziffer, die gerundet werden muss, 9 ist, gibt es beim Aufrunden eine gewisse Schwierigkeit. Die Ziffer sollte um 1 erhöht werden, es gibt aber keine Ziffer, die mehr als 9 ist. In diesem Fall wird wie bei der Division, also auch mit der vorherigen Ziffer gearbeitet. Runden wir folgende Beispiele auf drei gültigen Stellen:
- 8,695408
Wir wollen hier drei Stellen benutzen, die letzte Stelle ist 9. Nach der 9 folgt 5, wie müssen also aufrunden. 9 muss um 1 erhöht werden. Das geht nicht. Dann nimmt man zwei Ziffern (also hier die Ziffern nach dem Komma 69) und erhöht sie um 1 (69 wird zu 70). Also:
8,695408 ≈ 8,70
- 0,039995
Wir wollen wieder drei Stellen benutzen, die letzte Stelle ist 9. Nach der 9 folgt 9, wie müssen also aufrunden. 9 muss um 1 erhöht werden. Das geht nicht. Dann nimmt man zwei Ziffern (also hier die Ziffern 99) und versucht sie um 1 zu erhöhen. Das geht auch nicht, 99 ist die größte zweistellige Zahl. In diesem Fall nehmen alle drei Stellen (399) und erhöhen wir sie um 1:
0,039995≈0,0400
Die zwei Nullen nach dem 4 müssen geschrieben werden, um zu zeigen, dass es auf drei gültigen Stellen gerundet wurde.
- 999,73
In diesem Beispiel muss man wieder alle drei Stellen benutzen, das Runden findet aber doch davor statt!
999,73≈1000
Zahlenmengen
[Bearbeiten]Einführung zu den Zahlenmengen
[Bearbeiten]Einfach gesagt ist eine Menge eine Sammlung von mehreren Sachen. Viele Bücher zusammen sind eine Menge von Büchern, viele Blumen zusammen sind eine Menge von Blumen, viele Ziegen und Schafen und Kühe zusammen sind eine Menge von Tieren. Man kann sogar von einer Menge sprechen auch, wenn man eine Sache hat (z. B. ein Buch) oder keine Sache (die leere Menge). Ein Bereich der Mathematik, die Mengentheorie, beschäftigt sich mit den Mengen. In dieser Theorie spricht man auch von Zahlenmengen.
Natürliche Zahlen
[Bearbeiten]Die einfachste Zahlenmenge ist die Menge der natürlichen Zahlen :
1, 2, 3, 4, 5, …
Die Menge der natürlichen Zahlen schreibt man mit . Null kann auch zur Menge der natürlichen Zahlen gehören. Wie man die Menge mit oder ohne Null schreibt, unterscheidet sich zwischen Sprachen und Kulturen.
Ganze Zahlen
[Bearbeiten]Die Menge der natürlichen Zahlen kann man mit den negativen Zahlen erweitern. Dann entsteht die Menge der ganzen Zahlen :
… −3, −2, −1, 0, 1, 2, 3, …
Alle natürliche Zahlen sind auch ganze Zahlen. Andererseits sind NUR die positive ganze Zahlen (oder die nicht negativen) auch natürliche Zahlen!
Rationale Zahlen
[Bearbeiten]Wenn man natürliche oder ganze Zahlen dividiert, bekommt man oft Zahlen mit Nachkommastellen:
Diese Zahl ist keine ganze (und daher auch keine natürliche) Zahl. Sie ist eine sogenannte rationale Zahl. Die Menge alle Zahlen, die man als Brüche von ganzen Zahlen schreiben kann, ist die Menge der rationalen Zahlen. Man soll aufpassen. 11 durch 7 (11:7) ist eine Division zwischen zwei ganzen Zahlen. Der Bruch hingegen ist eine Zahl (eine rationale Zahl), die gleich so viel ist, wie das Ergebnis (Quotient) der Division 11:7.
Wenn man zwei ganze Zahlen dividiert, kann man wieder eine ganze Zahle bekommen (wie z. B. 26:2=13) oder eine Zahl mit Nachkommastellen. Wenn das Ergebnis Nachkommastellen hat, dann ist sie keine ganze Zahl mehr.
Alle ganze Zahlen (und daher auch alle natürliche) sind auch rationale Zahlen (z. B. ). NUR die rationalen Zahlen OHNE Nachkommastellen sind auch ganze Zahlen.
Für die Zahlen mit Nachkommastellen gibt es zwei Möglichkeiten: sie können endlich viele Nachkommastellen haben (z. B. ) oder unendlich viele Nachkommastellen (wie ). Im letzten Fall gibt es in den Nachkommastellen eine Wiederholung von der gleichen Zahlenfolge:
Diese wiederholte Zahlenfolge (hier die Zahlenfolge ) nennt man Periode. Eine intuitive Erklärung für die Entstehung dieser Periode können wir bei der Division feststellen, wenn wir sie ohne Taschenrechner durchführen: Wenn nach der letzten Kommastelle unendlich lang Nullen geschrieben werden können und die Division dadurch weiter geführt werden kann, wird irgendwann als Rest genau die gleiche Zahl vorkommen und dadurch wird der Prozess wieder genauso wiederholt.
Die erweiterte Zahlenmenge (ganze Zahlen und dazu Zahlen mit endlich viele oder unendlich viele aber periodischen Nachkommastellen) nennt man Menge der rationalen Zahlen .
Reelle Zahlen
[Bearbeiten]Es gibt aber auch Zahlen, die zwar unendlich viele Nachkommastellen haben aber keine Periode. z. B. ist eine solche Zahl. Es gibt einen Beweis dafür, der zeigt, dass man NICHT als Bruch von zwei ganzen Zahlen ausdrücken kann. ist eine sogenannte irrationale Zahl. Die irrationale Zahlen (wie ) zusammen mit den rationalen (wie oder −6) bilden zusammen die Menge der reellen Zahlen .
ALLE rationale Zahlen sind auch reelle Zahlen. NICHT alle reelle Zahlen sind auch rationale Zahlen (z. B. ist eine Reelle aber keine Rationale Zahl).
Man kann also sagen: 5 ist eine natürliche aber auch eine ganze, eine rationale und eine reelle Zahl. ist eine rationale, eine reelle aber auch eine ganze Zahl (warum? Weil −14:7 = −2 ist und −2 eine ganze Zahl ist). Sie ist aber keine natürliche Zahl (weil −2 eine negative Zahl ist). ist nur eine reelle Zahl und keine rationale, ganze oder natürliche Zahl. ist eine reelle, aber auch eine rationale, eine ganze und eine natürliche Zahl (weil ist).
Eine Darstellung der Beziehungen zwischen den Mengen kann man im Bild sehen. Die reelle Zahlen beinhalten alle anderen Mengen, sie sind sozusagen die „größte“ Menge, die natürlichen Zahlen hingegen sind in allen anderen Mengen drinnen, beinhalten aber selber keine andere Menge (zumindest nicht in diesem Bild, also, wenn wir über diese 4 Mengen sprechen). Die natürliche Zahlen sind sozusagen die „kleinste“ Menge von diesen 4 Mengen.
Arbeiten mit Termen
[Bearbeiten]Term Definition
[Bearbeiten]Ein Term ist ein mathematischer Ausdruck. , , , , sind alles Terme, wobei aus mehreren Teiltermen besteht.
Potenzen
[Bearbeiten]Potenz Definition
[Bearbeiten]Jeder Term der Form mn ist eine Potenz. Was unten steht (hier m) nennt man Basis, was oben rechts (hier n) Hochzahl.
Potenz Was bedeutet diese Schreibweise?
Wenn man 4+4+4 hat, kann man auch 3·4 schreiben: . Eine Multiplikation zeigt, wie oft man eine Zahl mit sich selbst addiert.
Wenn man 4·4·4 hat, dann kann man 4³ schreiben. Eine Potenzzahl (hier 4³) zeigt, wie oft (so oft, wie die Hochzahl, hier 3) man eine Zahl (die Basis, hier 4) mit sich selbst multipliziert.
Potenzen Erklärung
[Bearbeiten]Strichrechnungen unter Potenzzahlen
[Bearbeiten]Wir haben gelernt, dass eine Multiplikation uns zeigt, wie oft die gleiche Zahl innerhalb einer Summe vorkommt. Beispielsweise ist . Das bedeutet allerdings auch, dass ist, weil
Eine Potenzzahl zeigt, wie oft die gleiche Zahl innerhalb eines Produktes vorkommt. Beispielsweise: .
Was ist jetzt, wenn wir Potenzzahlen addieren (oder subtrahieren)?
Nehmen wir ein Beispiel: .
Bei 3a² und 7a² hat die Potenzzahl a² die gleiche Basis a und die gleiche Hochzahl 2. Diese Potenzen können zusammengerechnet werden:
Entsprechend können wir mit a⁴ arbeiten:
a² und a⁴ können wir hingegen nicht zusammenrechnen, da sie zwar die gleiche Basis a aber nicht die gleiche Hochzahl (2 bzw. 4) haben.
a² und b² können wir auch nicht zusammenrechnen, da sie zwar die gleiche Hochzahl 2 aber nicht die gleiche Basis (a bzw. b) haben.
Daher ist:
Warum ist es so? Wie schon erwähnt, können nur gleiche Summanden durch eine Multiplikation ersetzt werden:
Wenn wir 3⁴ und 3² anstatt 3 haben, sind die Summanden nicht gleich, da 3⁴=3·3·3·3=81 und 3²=3·3=9 ist:
Noch ein Beispiel:
Multiplikation von zwei Potenzen mit der gleichen Basis
[Bearbeiten]
Warum das so ist, ist leicht zu erklären:
Die Hochzahlen addiert man, auch wenn sie negativ sind:
Allgemein kann man daher folgern:
wobei n und m irgendwelche positive oder negative reelle Zahlen sein können. Für den Fall von natürlichen Hochzahlen können wir schreiben:
Division von zwei Potenzen mit der gleichen Basis
[Bearbeiten]
Warum das so ist, ist leicht zu erklären:
Die Hochzahlen subtrahiert man (oben minus unten), auch wenn sie negativ sind:
Da ein Bruch (fast) gleichbedeutend mit einer Division ist, kann man auch sagen, dass bei der Division von Potenzzahlen mit gleicher Basis das Ergebnis die gleiche Basis ist, mit einer Hochzahl, die die Differenz aus der Hochzahl des Dividends und der Hochzahl des Divisors ist. Allgemein kann man daher schreiben:
wobei n und m irgendwelche positive oder negative reelle Zahlen sein können.
Null als Hochzahl
[Bearbeiten]
und nach der Regel gilt auch:
Also ist gleichzeitig gleich 1 und gleich . Daher gilt:
Potenz einer Potenzzahl
[Bearbeiten]
Warum das so ist, kann man wie im Folgenden erklären:
- Kurze Erklärung zum Schritt : . Hier haben wir die eben erklärte Multiplikationsregel benutzt: .
Die Hochzahlen multipliziert man, auch wenn sie negativ sind:
Allgemein kann man daher schreiben:
wobei n und m irgendwelche positive oder negative reelle Zahlen sein können.
Potenz eines Produktes oder eines Bruches
[Bearbeiten]Mit einem Beispiel kann auch dieser Zusammenhang schnell erklärtwerden:
und entsprechend für einen Bruch:
Es gilt also allgemein:
Weitere Beispiele:
{{#ifeq:Mathematrix: BY GYM/ Theorie/ Klasse 8|Mathematrix: AT PSA Theorie nach Thema/ Arbeiten mit Termen
|
|
Binomische Formeln
[Bearbeiten]Binomische Formeln ausmultiplizieren
[Bearbeiten]
Es gibt drei binomische Formeln:
|
(a+b)² = a² + 2ab + b² |
|
(a-b)² = a² -2ab +b² |
|
(a+b) (a-b) = a² – b² |
Warum (a+b)² = a² + 2ab + b² ist, kann man leicht feststellen, wenn man die Potenz auf ihre Faktoren zerlegt und die Klammern aus multipliziert:
- (a+b)² = (a+b) (a+b) = a² + ab + ba +b² = a² + 2ab + b²
Ähnlich kann man die anderen Formeln zeigen:
- (a-b)² = (a-b) (a-b) = a² – ab – ba +b² = a² – 2ab + b²
- (a+b)(a-b) = a² - ab + ba – b² = a² – b²
Nun die Aufgaben, die mit binomischen Formeln zu tun haben, gehen davon aus, dass man die binomische Formeln schon kann und an der Stelle von a und b andere Terme stehen:
- Plusformel: (3d+5)² Hier haben wir statt a 3d und statt b 5.
(a | + | b)² | = | a² | + | 2 | a | b | + | b² |
↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ||||
(3d | + | 5)² | = | (3d)² | + | 2 | (3d) | (5) | + | 5² |
= | 9d² | + | 30d | + | 25 |
- Minusformel: (c – 4x)² Hier haben wir statt a c und statt b 4x.
(a | − | b)² | = | a² | − | 2 | a | b | + | b² |
↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ||||
(c | − | 4x)² | = | (c)² | − | 2 | (c) | (4x) | + | (4x)² |
= | c² | − | 8cx | + | 16x² |
- Plusminusformel: (5u + 2v) (5u – 2v) Hier haben wir statt a 5u und statt b 2v.
(a | + | b)² | ⋅ | (a | − | b) | = | a² | − | b² |
↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ||||
(5u | + | 2v)² | ⋅ | (5u) | − | 2v | = | (5u)² | − | (2v)² |
= | 25u² | − | 4v² |
Binomische Formeln faktorisieren
[Bearbeiten]36x² – 60ax +25a²=?
Hier ist gefragt, den Term als Quadrat eines sogenannten Binoms oder als Produkt von Faktoren (in Klammern) zu schreiben. Man kann sofort beobachten, dass es drei Summanden gibt, drei Teilterme: 36x², 60ax, 25a². Dadurch kann man sofort die Plusminus Formel ausschließen (da gibt es nur zwei Terme: a²-b²). Da es am mittleren Term ein Minus gibt, findet man sofort, dass es um die Minusform geht. Die quadratischen Terme sind 36x² und 25a². Wenn man sich ein bisschen mit den Quadratzahlen auskennt, weiß man, dass 36 das Quadrat von 6 und 25 das Quadrat von 5 ist. Also kann 36x² nur das Quadrat von 6x und 25a² von 5a sein. Der mittlere Term sollte dann 2·6x·5a sein, was auch tatsächlich stimmt ( 2·6x·5a=60ax). Daher gilt:
36x² – 60ax +25a² = (6x – 5a)²
Binomische Formeln erkennen
[Bearbeiten]121d² – 4t²
Das kann nur die Plusminusform sein, weil sie die einzige ist, die nur zwei Teilterme hat. Daher:
121d² – 4t² = (11d + 2t) (11d – 2t)
Bemerkung: die ersten sogenannten Quadratzahlen sind:
1 (=1²), 4 (=2²), 9 (=3²), 16 (=4²), 25 (=5²), 36 (=6²), 49 (=7²), 64 (=8²), 81 (=9²), 100 (=10²), 121 (=11²), 144 (=12²).
Das pascalsche Dreieck Binompotenzen
[Bearbeiten]ist dann kein Binom mehr (drei Summanden). (Hier wird der erweiterte Begriff von Summand benutzt: a+b-c ist die Summe der drei Terme „a“, „b“ und „−c“)
Wir haben bisher nur Binompotenzen mit 2 als Hochzahl gesehen. Es gibt Binompotenzen höheren Grades, also mit einer höheren Hochzahl aus dem Bereich der natürlichen Zahlen:
Bei der Erklärung der binomischer Formeln haben wir das Auflösen von Klammern benutzt. Bei wäre so was schon komplizierter, bei höheren Hochzahl schon ziemlich kompliziert. Um diese Ausdrücke ohne Klammer zu schreiben (Ausmultiplizieren), gibt es einen viel einfacheren Weg, das pascalsche_Dreieck.
Mit Hilfe dieses Dreiecks, kann man die sogenannten Koeffizienten der entstehenden Summanden leicht berechnen.
Das ganze Dreieck ist ein (gleichschenkliches) Zahlendreieck. Die Basis erweitert sich ständig, die Schenkel bestehen aus lauter Einser. Die erste zwei Zeilen sind ein gleichschenkliches Zahlendreieck mit 1 an jedem Eckpunkt.
Für die nächste Zeile schreibt man an den Rändern 1 und für die innere Zahlen addiert man immer jeweils zwei nebenstehenden Zahlen der vorherigen Zeile. Für die dritte Zeile hier schreibt man an den Rändern 1 und in der Mitte addiert man die zwei Einser von oben (Ergebnis 2):
Die vierte und die fünfte Zeile (und alle weitere Zeilen) entstehen in der gleichen Weise:
Wie kann man jetzt ausmultiplizieren?
Man schriebt eine Summe mit 4 Summanden (einen mehr als die Hochzahl des Binoms, hier ein mehr als 3). Jeder Summand besteht aus dem Produkt von a und b mit einer absteigende Hochzahl für a und eine aufsteigende Hochzahl für b. Die erste Hochzahl für a ist die Hochzahl des Binoms (hier 3 absteigend), für b ist sie Null (aufsteigend bis 3):
Wir benutzen dann die vierte Zeile des Dreiecks. Sie hat so viele Zahlen, wie die Anzahl der Summanden (4):
Diese Zahlen werden die Koeffizienten der Summanden sein:
Wenn im Binom Plus steht (a+b), dann steht Plus zwischen allen Summanden. Wenn im Binom Minus steht (a-b), dann alternieren sich plus und minus in der Summe. Berücksichtigen wir auch folgende Tatsachen: und , dann ergibt sich:
und
zusammengefasst:
Für kann man dann genau in der gleichen Weise das Binom leicht ausmultiplizieren. Hier hat man fünf Summanden, also muss die fünfte Zeile des pascalschen Dreiecks benutzt werden (1 4 6 4 1):
Wenn also das Binom (3d−2c)3) ausmultipliziert werden soll, dann wird der Ausdruck für (a−b)3 und an der Stelle von a → 3d benutzt (und an der Stelle von b → 2c).
also
Umformen
[Bearbeiten]Umformen Grundwissen Gegenrechnungen
[Bearbeiten]Wie kann man diese Aufgabe in der mathematischen Sprache schreiben? Für das Gefragte (wie viele Äpfel) wird in Mathematik irgendein Symbol benutzt, als Stellvertreter für die noch unbekannte Zahl. In der Regel wird als Symbol ein Buchstabe verwendet und nicht allzu selten x.
Mit x sind also die Äpfel gemeint, die Vassili am Anfang hatte. Wir wissen noch nicht, wie viele sie waren, daher schreiben wir ein Symbol dafür, ein Buchstabe, also x.
Wenn Vassili drei Äpfel der Lisa gibt, dann hat er weniger Äpfel als zuvor, es geht um eine Subtraktion. Von den x Äpfeln am Anfang sind drei Äpfel zu subtrahieren. Dass dann noch fünf Äpfel bleiben, wird durch den folgenden mathematischen Ausdruck geschrieben:
x−3=5
Man kann für x verschiedene Zahlen ausprobieren, z.B. 2, 3, 7, 8 oder 9. So kann man schon feststellen, dass nur acht minus drei gleich fünf ist. „x“ muss also 8 sein, damit die Rechnung stimmt. Vassili hatte also 8 Äpfel am Anfang.
Die ganze Zeit ausprobieren ist allerdings nicht gerade geschickt. Besonders bei größeren Zahlen wird es sogar ziemlich schwer. Es gibt in der Mathematik einen geschickteren Weg, die Aufgabe zu lösen. Man benutzt die sogenannte Gegenrechnung. Bei allen Gleichungen gibt es zwei Teile, ein Teil links vom „=“ und ein Teil rechts vom „=“. Bringt man einen Term von einer Seite zur anderen, dann muss man die Gegenrechnung benutzen.
Die Gegenrechnung der Subtraktion ist die Addition und umgekehrt.
Wenn x−3=5 ist, dann kann man die 3 auf die andere Seite vom „=“ bringen und statt minus die Gegenrechnung (plus) benutzen:
x=5+3 also x=8
Bei der Aufgabe c+4452 = 341 bringt man 4452 auf die andere Seite und benutzt die Gegenrechnung von minus. Die Lösung ist daher:
c+4452 = 341 → c= 341−4452 → c = −4111
Die Gegenrechnung der Multiplikation ist die Division und umgekehrt.
3f=114
Zwischen 3 und f steht nichts.
Wenn in Mathematik zwischen zwei Ausdrucken (zum Beispiel einer Zahl und einem Symbol, einer Klammer und einer Zahl und so weiter) nichts steht, dann ist Multiplikation gemeint (einzige Ausnahme: die gemischten Zahlen).
Da zwischen 3 und f nichts steht, ist mal gemeint. f ist ein Symbol und steht für irgendeine Zahl. Die Aufgabe ist herauszufinden, wie viel f sein soll, damit die Rechnung stimmt. In diesem fall soll 3 auf die andere Seite gebracht und die Gegenrechnung von mal (also durch) benutzt werden:
3f=114 (nichts zwischen 3 und f, also mal gemeint):
3·f=114 (3 auf die andere Seite von „=“ bringen und Gegenrechnung, also hier Division, benutzen)
f=114:3 und daher
f = 38.
Man kann auch einen Bruch statt einer Division benutzen:
Entsprechend ist die Gegenrechnung der Division die Multiplikation:
also k:5 = 11 und daher k = 11 · 5
k = 55
Was ist aber die Gegenrechnung vom Quadrat?
Die Gegenrechnung von Quadrat ist die sogenannte „Wurzel“:
z² = 81 also z = und daher z=9
9 ist die Zahl, deren Quadrat 81 ist, daher ist die Wurzel von 81 gleich 9. Wenn wir in der Gleichung z² = 81 z durch 9 ersetzen, dann stimmt die Gleichung tatsächlich: 9² = 81
Selbstverständlich ist die Gegenrechnung der Wurzel das Quadrat.
= 13 also m = 13² und daher m=169
Obwohl es für das Niveau dieses Buches nicht absolut notwendig ist, können wir doch auf eine Tatsache aufmerksam machen: Die Gleichung z² = 81 hat noch eine Lösung, wenn z gleich −9 ist. Freilich stimmt die Gleichung (−9)² = 81. (−9)² bedeutet (−9)·(−9). Minus mal minus ist plus und daher:
(−9)² =(−9)·(−9)= + 9·9 = 81 also
(−9)² = 81
Umformen einfache Kombinationen
[Bearbeiten]5x − 7 = 3x + 11
Wir wählen die linke Seite als die Seite, in der die Teilterme (Summanden) mit der gesuchten Variable (x) sein werden. Wir haben zwei solchen Teilterme, 5x und 3x. 5x ist schon auf der linken Seite, wir müssen also noch 3x auf die andere Seite bringen. Vor 3x steht das Symbol „=“. Ist 3x jetzt positiv oder negativ? Wenn man b=4 schreibt, ist +4 oder −4 gemeint? Die Antwort ist +4. Daher auch hier, wenn nach dem Symbol „=“ kein plus oder minus steht, dann ist ein plus gemeint. Wenn man 5x − 7 = 3x + 11 schreibt, ist es das Gleiche wie + 5x − 7 = + 3x + 11. Wenn man den Term 3x auf die andere Seite bringt, muss man die Gegenrechnung benutzen, also Subtraktion (minus).
5x − 7 − 3x = 11
7 hat kein x neben sich, sie muss auch auf die rechte Seite gebracht werden, wieder mit der Gegenrechnung, also diesmal mit Addition (plus):
5x − 3x = 11 + 7
Das Ganze kann man in einem Schritt machen:
5x − 7 = 3x + 11
5x − 3x = 11 +7
2x = 18
(Hier haben wir einfach die Rechnungen gemacht: 5x-3x ist 2x und 11+7 ist 18).
Es bleibt noch, 2 auf die andere Seite zu bringen. Zwischen 2 und x steht nichts, daher ist eine Multiplikation gemeint. Die Gegenrechnung ist eine Division:
x = und daher x = 9
Man kann das ganze auch so erklären:
5x − 7 = 3x + 11
Man will, dass auf der rechten Seite 3x verschwindet. Das kann passieren, indem man 3x subtrahiert. Ein Gleichung aber ist wie eine Waage. Das Gleichungssymbol (=) teilt die Gleichung in zwei Teilen, links und rechts. Was auf der einen Seite passiert, muss auch auf der anderen stattfinden, damit das Gleichgewicht erhalten bleibt. Man benutzt folgende Schreibweise:
5x − 7 = 3x + 11 | −3x (Man schreibt am Rand, was auf beiden Seiten zu tun ist)
5x − 7 − 3x = 3x + 11 − 3x
2x − 7 = 11
Man will aber auf der linken Seite nur Teilterme (Summanden) mit x haben, deshalb muss die -7 dort verschwinden. Das geht, indem man 7 auf beiden Seiten addiert.
2x − 7 = 11 | +7
2x − 7 + 7 = 11 + 7
2x = 18
Jetzt bleibt nur die Division:
2x = 18 | :2
x = 18 : 2 (Man kann auch schreiben)
x = 9
Sofern mehrere Teilrechnungen oder Zwischenschritte im Kopf durchgeführt werden, wird zusammengefasst und kürzer notiert:
5x − 7 = 3x + 11 | −3x+7
2x = 18 | :2
x =
x = 9
Wenn die Variable innerhalb einer Klammer steht, ist der erste Schritt, die Klammer aufzulösen, sonst geht man wie vorher vor:
4y + 3 (7 − 5y) = 11 − 6y
4y + 21 − 15y = 11 − 6y | −21
4y − 15y = 11 − 6y −21 | +6y
4y − 15y + 6y = 11 − 21
− 5y = −10 | : (−5)
y=2
Wenn man y durch 2 in der Anfangsgleichung 4y + 3 (7 − 5y) = 11 − 6y ersetzt, stellt man fest, dass die Gleichung tatsächlich stimmt.
4y + 3 (7 − 5y) = 11 − 6y
4·2 + 3 (7 − 5·2) = 11 − 6·2
8 + 3 ·(−3) = 11 − 12
8 − 9 = − 1
In der Tat ist 2 der einziger Wert von y, für den die Gleichung wirklich stimmt. Die LeserInnen können andere Werte ausprobieren und feststellen, dass die Gleichung dann nicht mehr stimmt.
Bruchterme
[Bearbeiten]Bruchterme kürzen
[Bearbeiten]
- Erster Schritt: Vereinfachen (geht nur im Zähler; ist so viel wie ):
- Zweiter Schritt: Herausheben (geht oben und unten):
- Dritter Schritt: Nach binomischen Formeln suchen. Das geht hier nur unten; der Term im Klammer ist nach der Minus binomische Formel gleich . Daher ergibt sich der Bruch:
- Vierter Schritt: Kürzen, was man kürzen kann:
Das Ergebnis ist daher:
Bruchterme in Brüchen mit gemeinsamen Nenner umwandeln
[Bearbeiten]Im Kapitel über Brüchen haben wir schon gesehen, wie man zwei gleichnamige und zwei ungleichnamige Brüche addiert:
Brüche mit gleichem Nenner:
Brüche mit unterschiedlichen Nennern: Zähler und Nenner des ersten Bruches mit Nenner des zweiten erweitern und entsprechend für den zweiten Bruch!
Dabei ist es nicht wichtig, ob man minus oder plus zwischen den Brüchen hat. Allein der Nenner (ob er der gleiche oder nicht ist) spielt einer Rolle.
Der Vorgang ist genau der gleiche für Bruchterme.
Brüche mit gleichem Nenner:
Brüche mit unterschiedlichen Nennern:
Wenn aber die Sache etwas komplizierter wird, dann benutzt man einen Vorgang, der sehr ähnlich zum Verfahren der Primfaktorzerlegung und ihre Anwendung bei Strichrechnungen zwischen mehreren Brüchen ist.
Für jeden Teilterm, jede Variable, im Nenner, wählt man die höchst Hochzahl die vorkommt. Diese wird dann im gemeinsamen Nenner benutzt. Für a ist sie 3 (a³), für t 7 (t⁷), für x ist die Hochzahl 1(x¹ also x) und für s auch 1 (also s). Der gemeinsame Nenner wird daher a³t⁷xs sein. Den Zähler multipliziert man dann, mit den aus dem Nenner fehlenden Teilen.
Wieso habe wir den Zähler im ersten Bruch (5s) mit ts multipliziert? Wir haben erst den gemeinsamen Nenner (a³t⁷xs) durch den Nenner des Bruches (a³t⁶x) dividiert:
Mit diesem Term (diesem Ergebnis) muss man den Zähler multiplizieren. Den gleichen Prozess haben wir beim zweiten Bruch wiederholt. Dieser Prozess allerdings (gemeinsamen Nenner durch den jeweiligen Nenner dividieren) haben wir auch bei den Strichrechnungen zwischen mehreren Brüchen benutzt, wo wir auch die Primfaktorzerlegung angewandt haben.
Was im Zähler steht, ist nicht so wichtig. Im Nenner allerdings können die Faktoren größere Terme in Klammern sein:
Finden wir erst den gemeinsamen Nenner. Es gibt im Nenner des ersten Bruches die Termen a, w, (t-1), (t+1) und (t-3). Im zweiten Bruch findet man im Nenner noch folgende Terme dazu: p, (q^2+7+r). Wir sollten für den gemeinsamen Nenner die höchste Hochzahl des jeweiligen Terms benutzen. Beispielsweise ist diese für den Term a die Hochzahl 3, für den Term w die Hochzahl 5, für den Term (t+1) die Hochzahl 5 usw. Der gemeinsame Nenner wird dann sein.
Der Zähler des ersten Bruches wird durch den Quotient des gemeinsamen Nenners durch den Nenner des ersten Bruches erweitert:
Entsprechend für den zweiten Bruch:
Nun kann man das Ganze in einem Bruch schreiben:
Bruchtermegleichungen
[Bearbeiten]
Die Schritte, um die Lösung zu finden, sind am Anfang wie die Schritten bei Abschnitt„Bruchterme kürzen“.
- Erster Schritt: Vereinfachen (geht nur im Zähler des ersten Bruches; ist so viel wie ):
- Zweiter Schritt: Herausheben (geht nur im Zähler und im Nenner des ersten Bruches;):
- Dritter Schritt: Nach binomischen Formeln suchen (das geht hier nur im Nenner des Bruches auf der rechten Seite der Gleichung: ):
- Vierter Schritt: Kürzen, was man kürzen kann (das geht in diesem Beispiel beim ersten Bruch: ). Damit ergibt sich:
- Fünfter Schritt: Hat man diese Schritte überprüft, versucht man die Bruchterme auf den gleichen Nenner zu bringen, wie am vorherigen Teilkapitel gezeigt. Hier gibt es im Nenner zwei verschiedenen Terme, und . Der Bruch auf der rechten Seite hat schon beide, man braucht (und darf) ihn NICHT erweitern. Am ersten Bruch fehlt noch der Term und mit diesem muss er erweitert werden. Am zweiten Bruch fehlt der Term und mit diesem muss er erweitert werden.
- Sechster Schritt: Jetzt haben wir überall den gleichen Nenner. Wenn wir beide Seiten der Gleichung (also alle Brüche) mit diesem Nenner multiplizieren, dann wird er überall gekürzt.
- Siebter Schritt: Das vorläufige Ergebnis ist daher die folgende Gleichung, die wir dann mit einfachen Umformungen lösen können:
Die Lösungsmenge, also die Zahlen, die die Bruchtermegleichung am Anfang erfüllen, ist hier nur eine Zahl, die Zahl −2. Man schreibt:
Wie man sieht, ist die Lösung einer Bruchtermegleichung kompliziert. Das Üben und die Erfahrung machen die Sache selbstverständlich einfacher. Es gibt aber doch noch einen Schritt, um so eine Gleichung vollständig zu lösen: Die Definitionsmenge muss vorerst herausgefunden werden. Mit diesem Schritt beschäftigen wir uns im nächsten Teilkapitel.
Polynomdivision
[Bearbeiten]Definitionsmenge
[Bearbeiten]Nehmen wir folgendes Beispiel:
In den Nennern gibt es verschiedene Terme:
Alle diese Terme kann man als Produkte von verschiedenen Faktoren schreiben:
Alle diese Faktoren stehen im Nenner. Es gibt eine Regel in Mathematik, die besagt:
Die Division durch 0 ist nicht definierbar.
Warum das so ist, kann man in der höheren Mathematik zeigen. Der Nenner darf also nicht null sein. In welchen Fällen kann der erste, der zweite oder der dritte Nenner null sein? Dafür setzen wir diese Nenner gleich null!
Wann kann jetzt der erste Ausdruck null sein? Wenn zumindest einer der Faktoren null ist!
In der gleichen Weise für die anderen zwei Nenner:
Der Ausdruck kann nur dann definiert werden, wenn x nicht 0, 1 oder -1 ist. x darf daher alle andere Zahlen sein außer -1, 0 und 1. All die Zahlen, die x sein darf, nennt man Definitionsmenge. Man sagt, dass die Definitionsmenge die Menge der reellen Zahlen außer -1,0 und 1 ist und schreibt:
oder
Die Definitionsmenge anzugeben ist bei jeder Aufgabe sehr wichtig. Nehmen wir das Beispiel am Anfang und setzen wir es gleich null:
Die Lösungsschritte haben wir im vorherigen Absatz gelernt. Die Definitionsmenge ist (wie gerade eben gezeigt) . Wer die Lösungsschritte macht, kommt zum Ergebnis . Dieser Wert gehört aber nicht zur Definitionsmenge. x darf nicht -1 sein, weil in diesem Fall eine Division durch null vorkommt. Man sagt in diesem Fall, dass die Gleichung keine Lösung hat (und sie hat tatsächlich keine Lösung: -1 kann keine Lösung sein!) oder dass die Lösungsmenge die sogenannte leere Menge ist: oder .
Bei manchen Aufgaben kann es sein, dass die allgemeine Definitionsmenge angegeben wird (z.B. die natürliche Zahlen). Wenn man das Beispiel mit den Tischen im Kapitel über lineare Gleichungssysteme betrachtet, kann man feststellen, dass die Antwort nur eine natürliche Zahl sein kann und dass etwas in der Angabe nicht stimmt, wenn das nicht der Fall ist.
Obwohl es nicht Thema diese Buches ist, erwähnen wir hier, dass die Definitionsmenge auch durch Ungleichungen angegeben werden kann. Das ist beispielsweise der Fall, wenn man einen Term in einer quadratischen Wurzel hat. Nehmen wir das folgende Beispiel:
Wir behaupten hier, dass dieser Ausdruck nur dann definiert werden kann[1], wenn der Term unter der Wurzel positiv oder null (anders gesagt: nicht negativ) ist. Das liegt daran, dass die Gegenrechnung der Wurzel das Quadrat ist und das Quadrat von jeder beliebigen Zahl immer positiv ist (oder null, wenn die Zahl null ist). Bei positiven Zahlen ist diese Tatsache klar: + mal + wird + sein. Aber auch bei den negativen Zahlen ist es genauso: − mal − ist auch immer plus! Es gibt also keine Zahl, deren Quadrat negativ ist. In unserem Beispiel muss daher gelten:
Man sagt „x muss größer oder gleich null sein“.
- ↑ genauer gesagt in der Menge der reellen Zahlen. Warum aber das jetzt gesagt werden muss, ist überhaupt nicht Thema dieses Buches
Lineare Funktion
[Bearbeiten]Funktion allgemein
[Bearbeiten]Wenn man z.B. die Temperaturen um gewissen Uhrzeiten an einem Tag misst, dann hat man schon eine Art von Funktion. Man sagt, dass die Temperatur die abhängige Variable ist und die Uhrzeit die unabhängige. Für jeden Wert der unabhängigen Variable gibt es einen Wert der abhängigen Variable aber für jeden Wert der abhängigen Variable kann es keine, eine oder mehrere Werte der unabhängigen Variable geben.
In unserem Beispiel: für jede Uhrzeit gibt es genau eine Temperatur (es kann nicht mehrere geben), eine Temperatur aber kann nie, einmal oder mehrmals vorkommen. Man kann die ganze Information in einer Tabelle schreiben und mit Hilfe der Tabelle, kann man auch ein Diagramm erstellen:
Wie man im Diagramm ablesen kann, es gibt nur eine Temperatur für jede Uhrzeit (z.B. um 10 Uhr ist die Temperatur 14°C und nicht gleichzeitig 18°C) aber für jede Temperatur kann es keine (z.B. 5°C gibt es nicht), eine (z.B. 10° C gibt es nur um 6 Uhr) oder mehrere Zeiten (z.B. 15°C kommt 2 mal vor, man kann sogar raten, dass es die gleiche Temperatur irgendwann zwischen 10 Uhr und 12 Uhr gab!).
Was ist eine lineare Funktion
[Bearbeiten]Wenn das Diagramm einer Funktion eine Gerade ist, dann geht es um eine sogenannte lineare Funktion. Ein lineare Funktion hat die allgemeine Form:
y=s x +A
wo y die abhängige Variable ist, x die unabhängige Variable und s und A irgendwelche Konstanten (Zahlen, die sich nicht ändern, wie die Variablen). So sind die folgende Funktionen linear:
y=3x – 2 y=-0,5x+130 y= ¾ x – 2,3 y=-√3 x -5
In der ersten Funktion y=3x – 2 ist s=3 und A=-2.
In der zweiten Funktion y=-0,5x+130 ist s=-0,5 und A=130.
In der dritten Funktion y= ¾ x – 2,3 ist s= ¾ und A=-2,3.
In der vierten Funktion y=-√3 x -5 ist s=-√3 und A=-5.
Selbstverständlich kann man statt x und y andere Symbole benutzen:
y=3x – 2, a=3b – 2 und V=3h – 2 sind Darstellungen der gleichen Funktion, es werden nur andere Symbole für x und y benutzt. y= ¾ x – 2,3 ist doch eine andere Funktion, weil s und A (die Konstanten) anders sind. Wenn allein s oder allein A oder beide s und A in zwei Funktionen anders sind, dann haben wir zwei unterschiedlichen linearen Funktion. Wenn s und A in zwei Funktionen gleich sind, dann haben wir die gleiche Funktion, egal welche Symbole wir für x und y benutzen.
In einer linearen Funktion wird die Konstante, mit der x multipliziert wird (hier mit s bezeichnet), Steigung der Funktion genannt. Die Steigung ist ein sehr wichtiger Begriff in der höheren Mathematik. Die Konstante, die dann addiert wird (hier mit A bezeichnet) nennt man y-Achsenabschnitt. Man muss auch sagen: in verschiedenen Staaten benutzt man unterschiedliche Symbole für s und A, z.B.
Hier ist dann m die Steigung und n der y-Achsenabschnitt (Gebrauch in Deutschland) .
Hier ist dann k die Steigung und d der y-Achsenabschnitt (Gebrauch in Österreich) .
Hier ist dann m die Steigung und q der y-Achsenabschnitt (Gebrauch in der Schweiz) .
Hier ist dann m die Steigung und b der y-Achsenabschnitt (Gebrauch in Spanien) .
Hier ist dann a die Steigung und b der y-Achsenabschnitt (Gebrauch in Frankreich und auf Englisch) .
Lineare Funktion durch ein Alltagsbeispiel verstehen
[Bearbeiten]Tabelle für eine lineare Funktion erstellen
[Bearbeiten]Für jede Funktion kann man eine Tabelle machen. Diese Tabelle kann man dann als Punkte in einem Diagramm darstellen. Als Beispiel benutzen wir die Funktion y=3x – 2:
Diagramm einer linearen Funktion mit Hilfe von zwei Punkten erstellen
[Bearbeiten]Um diese Funktion in einem Diagramm darzustellen braucht man nur zwei Punkte. Einen Punkt schreibt man mit einem Wertepaar P:(x|y), wobei erst immer der x-Wert geschrieben wird und dann der y-Wert (innerhalb von Klammern). Benutzen wird beispielsweise PA:(-1|-5) und PB:(2|4) (erstes Bild). Mit Hilfe dieser Punkte kann man eine Gerade ziehen (zweites Bild). Wie man dann feststellen kann, liegen alle Wertepaare der Tabelle auf dieser Gerade! (Drittes Bild)
Das ist genau die Sache. Alle Wertepaare einer linearen Funktion liegen auf der gleichen Gerade! Die Darstellung einer linearen Funktion auf einem Koordinatensystem ist eine Gerade!
Eine lineare Funktion mit Hilfe von zwei Punkten ermitteln
[Bearbeiten]Wenn man zwei Punkte einer linearen Funktion hat, kann man nicht nur die entsprechende Gerade im Diagramm zeichnen, sondern auch die Funktion selber finden, wenn man sie nicht kennt. Nehmen wir die folgenden zwei Punkte P und Q, die man auch vom Diagramm ablesen kann:
Mit Hilfe der beide Punkten kann man die Funktion in einem Koordinatensystem darstellen, wie im Bild. Wie viel ist die Steigung dieser Funktion und wie viel der y-Achsenabschnitt?
Die allgemeine Gleichung einer linearen Funktion ist:
wobei hier mit s die Steigung gemeint ist und mit A der y-Achsenabschnitt.
Um die Steigung und den y-Achsenabschnitt der im Diagramm dargestellten Funktion zu berechnen, werden wir hier das sogenannte Gleichsetzungsverfahren benutzen. Setzen wir die Wertepaare für die zwei gegebenen Punkten in der allgemeinen Gleichung der linearen Funktion ein:
Formen wir beide Gleichungen auf A um:
Da die rechten Seiten der Gleichungen gleich sind (beide A), sollen auch die linken gleich sein.
und daher
Die Funktion lautet daher:
Für die direkte Berechnung der Steigung s gibt es allerdings eine Formel. Es gilt:
wobei Δy die Differenz der y-Werte der zwei Punkte und Δx die Differenz der x-Werte ist.
In unserem Beispiel sind die Punkte und , also die y-Werte 4 und -2 und die x-Werte 2 und 5. Die entsprechenden Differenzen sind: Δy=4 − ( − 2)=6 und Δx=2-5=-3. Daher ist die Steigung der abgebildeten linearen Funktion, die durch die Punkte P und Q geht:
Die Steigung und ihre Zusammenhänge
[Bearbeiten]Beweis der Formel der Steigung einer linearen Funktion
[Bearbeiten]
Zeigen Sie, dass die Steigung s |
Wir benutzen hier 2 Punkte, wie in der entsprechenden Aufgabe mit konkreten Zahlen. Diesmal benutzen wir Symbole statt konkreten Zahlen.
Wir formen beide Gleichungen auf A um:
Da die rechten Seiten der Gleichungen gleich sind (beide A),
sollen auch die linken gleich sein.
Das Symbol bedeutet Differenz. und , daher:
Steigung
Zusammenhang linearer Funktion und direkter Proportionalität
[Bearbeiten]Die direkte Proportionalität ist eine lineare Funktion, deren y-Achsenabschnitt A null ist. Wenn wir für die Steigung der linearen Funktion das Symbol s und für den y-Achsenabschnitt das Symbol A, dann lautet die allgemeine Darstellung:
y= s·x + A
Wenn der y-Achsenabschnitt null ist, dann haben wir eine direkte Proportionalität:
y= s·x
Die Steigung ist in diesem Fall das Verhältnis (Quotient) zwischen abhängiger und unabhängiger Variable:
Es gibt allerdings noch einen Zusammenhang zwischen direkter Proportionalität und linearer Gleichung. Die Steigung ist das Verhältnis zwischen Änderung der unabhängigen und Änderung der abhängigen Variable:
Das bedeutet, dass eine direkte Proportionalität zwischen den beiden Änderungen besteht:
Zusammenhang linearer Funktion und Ähnlichkeit ebener Figuren
[Bearbeiten]und
also, die Quotienten der entsprechenden Seiten sind gleich!
Seite DE ist allerdings 1,5 mal die Seite AB, also um 50% größer als AB. Das gilt allerdings genauso für Seiten EF und BC, also EF ist 50% größer als BC. Man stellt daher fest, dass bei der Ähnlichkeit von Figuren eine direkte Proportionalität (eine lineare Funktion mit y-Achsenabschnitt gleich null) für die Längen der Seiten vorliegt: wird eine Seite größer, dann wird die andere auch und zwar um den gleichen Prozentsatz!
Einheiten der Steigung
[Bearbeiten]Die Steigung einer Gerade ist allgemein die Differenz zwei y-Werte durch die Differenz der entsprechenden x-Werte, also ein Differenzenquotient (Bild links). Da bei einem s-t Diagramm auf der y-Achse die Strecke dargestellt wird und bei der x die Zeit (Bild rechts), ergibt sich der Quotient:
Steigung:
Der letzte Quotient ist nichts anders als die mittlere Geschwindigkeit:
Daher:
Die Steigung in einem s-t Diagramm zeigt uns die Geschwindigkeit
Im konkreten Beispiel rechts: s1 ist zwei Einheiten, s2 5 Einheiten. Wenn die Einheiten der y-Achse Meter (m) sind, ist Δs=3 m. Entsprechend, wenn die Einheit auf der x-Achse Sekunde (s) ist, dann ist Δt=6 s. Die Steigung und daher auch die Geschwindigkeit ist in diesem Fall
Entsprechend können wir die physikalische Größe und die Einheiten der Steigung in einem v-t Diagramm finden. Da bei einem v-t Diagramm auf der y-Achse die Geschwindigkeit dargestellt wird und bei der x die Zeit (Bild rechts), ergibt sich der Quotient:
Steigung </math>
Die Steigung zeigt uns in diesem Fall eine Änderung der Geschwindigkeit, also eine Beschleunigung:
Daher:
Die Steigung in einem v-t Diagramm zeigt uns die Beschleunigung
Im konkreten Beispiel rechts: ist 2 Einheiten, 5 Einheiten, daher, wenn die Einheiten m/s (Meter pro Sekunde) sind, ist , und für Sekunde als Einheit auf der x-Achse ist . Die Steigung und daher auch die Beschleunigung ist in diesem Fall:
Von diesen Beispielen wird daher klar:
Die Steigung ist eine Änderungsrate, sie zeigt wie schnell sich die Größe der y-Achse in Bezug auf die Größer der x-Achse ändert. Die Einheiten der Steigung sind daher die Einheiten der y-Achse durch die Einheiten der x-Achse.
Noch zwei Beispiele: Wenn auf der y-Achse Kraft (in Newton) dargestellt wird und auf der x Fläche (in m2), dann ist die physikalische Größe der Steigung Druck (also Kraft durch Fläche) und die Einheit Pa (Pascal, also Newton durch m2). Wenn auf der y-Achse Masse (in kg) steht und auf der x Volumen (in ), dann ist die physikalische Größe der Steigung Dichte (also Masse durch Volumen) und ihre Einheiten kg/.
Textaufgaben zu den linearen Funktionen
[Bearbeiten]Die andere Konstante wird dann der y-Achsenabschnitt sein. Die Einheit des y-Achsenabschnitts ist auch die Einheit der abhängigen Variable und auch die erwähnte Einheit A bei der Steigung. Damit haben wir alle Elemente in einem mathematischen Zusammenhang „übersetzt“.
- Beim Taxifahren ist die Grundgebühr 4€ und jede Minute kostet dann 0,5€. Stelle diesen Zusammenhang als lineare Funktion dar.
Lösung:
Hier sind zwei Zahlen angegeben: 4€ und 0,5€. Über 0,5€ ist aber auch gesagt, dass man "jede Minute" 0,5€ zahlt. Anders ausgedrückt sind es 0,5€ pro Minute. Einheit A (€) durch Einheit B (min). Das heißt, es geht um eine Änderungsrate. 0,5 soll also unsere Steigung sein. Dann ist die Grundgebühr der y-Achsenabschnitt. Die abhängige Variable wird also in € ausgedrückt (wie die Grundgebühr und die Einheit A oben in der Steigung), die unabhängige in Minuten (wie die Einheit B, die Einheit, die in der Steigung unten steht). Für beide Variablen kann man frei irgendwelche Symbole auswählen, gewöhnlich sollen sie auch sinnvoll sein, z.B. hier K für die Kosten und t für die Zeit (Englisch: time):
K(t)= 0,5 t + 4 (t in Minuten, K in €)
Man soll auch eine Entscheidung über das Vorzeichen der Steigung treffen. Das ist eher einfach. Wenn es klar ist, dass die abhängige Variable (z.B. y, hier die Kosten K) auch größer wird, wenn die unabhängige (z.B. x, hier die Zeit t) größer wird, dann ist die Steigung positiv. Bei den Kosten ist es klar, dass sie immer mehr werden, wenn die Fahrt länger dauert. Also ist die Steigung positiv.
Wenn aber es klar ist, dass die unabhängige Variable kleiner wird, wenn die unabhängige größer wird, dann ist die Steigung negativ. Schauen wir ein entsprechendes Beispiel.
- Eine Kerze mit einer Länge von 1,8 dm wird angezündet. Dabei brennt sie stündlich um ca. 0,9 cm ab. Stelle diesen Zusammenhang als lineare Funktion dar.
Hier ist 0,9 cm eine Änderungsrate, also 0,9 cm pro Stunde. 0,9 ist also die Steigung. Die Kerze wird aber immer kürzer, also wird die Steigung negativ sein. 1,8 dm wird unserer y-Achsenabschnitt sein. Wir wählen L für die Länge und t für die Zeit aus:
L(t)= - 0,9 t + 18 (t in Stunden, L in cm)
Vorsicht!
Man soll immer die Einheiten schreiben und die richtigen Einheiten benutzen.
Wenn man beispielsweise für den Abstand die Einheit Meter benutzt, muss man alle angegebene Abstände in Meter umwandeln, wenn sie nicht schon in Meter angegeben sind. Der vorsichtige Leser hat vielleicht gemerkt, dass der y-Achsenabschnitt in der Funktion 18 und nicht 1,8 ist. Wir haben erst die 1,8dm in 18cm umgewandelt! Das ist notwendig, weil die Steigung in cm (und nicht dm) pro Stunde gegeben ist. Ähnlich, wenn der Wert für die Zeit in Minuten gegeben ist, muss man sie erst in Stunden umwandeln (die Steigung ist ja pro Stunden). Darauf muss man also immer aufpassen!
Schauen wir ein etwas komplexeres Beispiel.
- Der Druck in der Atmosphäre eines Planeten ist durch eine lineare Funktion angegeben. Auf 50km Höhe ist er 3 Atm, auf 200 km 1,8 Atm. Wie viel ist der Druck
- auf der Oberfläche des Planeten?
- auf 300 km Höhe?
- 50 km unterhalb der Oberfläche?
In diesem Fall muss man erst die lineare Funktion mit Hilfe der beiden Punkte finden. Der aufmerksame Leser hat vielleicht schon gesehen, dass die gegebenen Punkte hier sind. Wie im vorherigen Teil gezeigt, man kann die Funktion in zwei verschiedenen Weisen finden:
Man kann das lineare Gleichungssystem lösen:
P(x|y) | x | y | y=mx+n |
---|---|---|---|
P(50|3) | 50 | 3 | 3=m·50+n |
Q(200|1,8) | 200 | 1,8 | −1,8=m·200+n |
oder man kann direkt die Formel für die Steigung benutzen:
und dann den y-Achsenabschnitt finden.
Selbstverständlich bekommt man in beiden Fällen die gleiche Antwort:
m=-0,008 und n=3,4 also
Mit Hilfe der Funktion kann man jetzt die Fragen beantworten.
- Auf der Oberfläche ist die Höhe (also der x-Wert) Null. Das ist der y-Achsenabschnitt, also 3,4 Atm
- In der zweiten Frage setzt man die 300 km für den x-Wert ein: , also 1 Atm.
- In der dritten Frage muss man denken, dass unterhalb der Oberfläche die Höhe negativ sein wird: also 3,8 Atm.
Lineare Gleichungssysteme mit 2 Variablen
[Bearbeiten]Einsetzungsverfahren
[Bearbeiten]Wie löst man so eine Aufgabe? Man benutzt ein sogenanntes lineares Gleichungssystem. Wir werden uns hier mit der einfachste Form eines Gleichungssystems beschäftigen, einem Gleichungssystem mit zwei unbekannten und zwei Gleichungen. Es gibt verschiedene Wege so ein System zu lösen, wir werden hier zunächst einmal einen Weg zeigen.
Hier gibt es zwei unbekannte, die Anzahl der Tische für 3 Personen und die Anzahl der Tische für 5 Personen. Wenn man in Mathematik etwas nicht kennt, benutzt man ein Symbol dafür, in der Regel (kann aber a, b, z, A1, oder irgendwas sein). Lass uns dann mit die Anzahl der Tische für 3 Personen bezeichnen. Wir wissen nicht, ob die Anzahl der Tische für 5 Personen gleich so groß wie die Anzahl der Tische für 3 Personen ist. Daher müssen wir für die Anzahl der Tische für 5 Personen ein anderes Symbol benutzen, z.B. . Also:
: die Anzahl der Tische für 3 Personen
: die Anzahl der Tische für 5 Personen
Wie schon gesagt, wir wissen nicht, wie viele Tische es für 3 oder für 5 Personen gibt. Wir wissen aber schon, dass es insgesamt 8 Tische gibt. Also die x Tische und die y Tische zusammen sind 8 Tische:
Die Tische sind für 3 Personen. Wir wissen zwar nicht, wie viel ist, aber wir können sagen, dass
1 Tisch → | (3 · 1 =) | 3 | Personen |
2 Tische → | (3 · 2 =) | 6 | Personen |
5 Tische → | (3 · 5 =) | 15 | Personen |
8 Tische → | (3 · 8 =) | 24 | Personen also |
x Tische → | (3 · x =) | Personen |
da wir x Tische haben, anstatt eine bestimmte Zahl, wie 1, 2, 5 oder 8 Tische.
In der gleichen Weise kann man sagen, dass die Tische (für 5 Personen) Gäste bedienen können.
Wir haben also Personen an den Tischen und Personen an den Tischen.
Wir wissen jetzt nicht, wie viel 3x oder 5y ist (das sind Personen), wir wissen aber, dass insgesamt 36 Personen bedient werden können, also:
Wir schreiben jetzt beide Gleichungen zusammen:
Mit einer Gleichung können wir weder x noch y finden, wir können aber hier die erste Gleichung (am einfachsten) umformen:
Da wir es wissen, dass x=8−y ist, können wir dann in der zweiten Gleichung statt x, 8−y schreiben:
(x wird also durch 8-y ersetzt)
Jetzt haben wir eine Gleichung mit einem Unbekannten. So was können wir schon lösen, wie wir beim Kapitel Umformen gelernt haben:
|Klammer auflösen | |
|-24 (und y zusammenrechnen) | |
| :2 | |
y sind die Tische mit 5 Personen. Es gibt also 6 Tische für 5 Personen. Wie viele sind die restlichen? Wir benutzen unsere Gleichung:
Es gibt also x=2 Tische für 3 Personen und y=6 Tische für 5 Personen. Somit haben wir die Aufgabe gelöst!
Lineare Gleichungssysteme Begriffe
[Bearbeiten]Lass uns jetzt ein paar Begriffe erklären.
Eine Gleichung ist ein mathematischer Ausdruck, der das Symbol „=“ („ist“, „gleich“ oder „ist gleich“ ausgedrückt) zumindest einmal beinhaltet und bei dem auf beide Seiten des Symbols „=“ andere mathematische Ausdrücke stehen. „6+3=“ ist noch keine Gleichung, „6+3=9“ oder „6+3=x“ oder „6+y=x“ schon.
Wenn alle Variablen in der Gleichung ohne Hochzahl oder sonst was vorkommen, dann spricht man von einer linearen Gleichung(1). oder oder sind lineare Gleichungen. , oder hingegen nicht (letztere weil im Nenner ist).
Eine Gleichung kann keine, eine oder mehrere Variablen beinhalten. hat keine Variable (und ist allerdings eine wahre Aussage: 6+3 ist tatsächlich 9). , , haben eine Variable. , und haben zwei Variablen.
Wenn man zwei oder mehrere Gleichungen irgendwie verbindet, dann hat man ein Gleichungssystem. In diesem Kapitel haben wir 2 Gleichungen je mit 2 unbekannten gehabt:
Da beide Gleichungen hier linear sind, spricht man von einem linearen Gleichungssystem. So ein System kann man in verschiedenen Wege lösen. Der Weg, den wir hier benutzt haben, nennt man Einsetzungsverfahren. Es gibt dann noch das Gleichsetzungsverfahren und das Additionsverfahren (wir werden sie gleich lernen). Das Einsetzungsverfahren ist sehr wichtig (auch in anderen Wissenschaften, wie in der Physik), da man es leicht auch bei nicht lineare Gleichungssysteme anwenden kann. Dieses Thema ist von einem höheren Niveau und daher nicht in diesem Buch behandelt.
Die Zahlen (manchmal aber auch Symbole), die vor den Variablen stehen und mit diesen multipliziert werden, nennt man Koeffizienten. In der zweiten Gleichung () ist der Koeffizient von 3 und von 5. In der ersten Gleichung () steht keine Zahl vor den Variablen. Trotzdem sagt man dann, dass der Koeffizient 1 ist (es gilt ja, dass und ist). Bei ist der x-Koeffizient , der y-Koeffizient und der z-Koeffizient . Die Symbole c und d sind in dieser Gleichung nicht Variablen (das ist aber nicht immer klar, man soll in solchen Fällen immer die Vorgaben lesen). Wenn ein Symbol benutzt wird, der eine feste Zahl (und daher keine Variable) darstellt, dann nennt man diese Symbol eine Konstante. Die Konstante c ist hier gleichzeitig der Koeffizient der Variablen v. Die Konstante d hingegen ist keiner Koeffizient.
Ein Gleichungssystem kann keine, zwei oder unendlich viele Lösungen haben. Das ist allerdings Thema eines anderen Kapitels.
Gleichsetzungsverfahren
[Bearbeiten]
Formen wir beide Gleichungen auf um:
- Die erste Gleichung geht leicht:
daher
- Die zweite Gleichung ist etwas schwerer:
|-5y | |
|:3 | |
Das Gleichungssystem sieht jetzt wie in Folgendem aus:
Da beide Ausdrücke rechts der beiden Gleichungen gleich mit sind, sind sie auch zueinander gleich:
Jetzt haben wir eine Gleichung mit einer Unbekannte, was man mit Umformen lösen kann:
|⋅3 | |
|(Klammer auflösen) | |
|−36+3y | |
|:(−2) | |
und daher
Die Antwort ist:
und
also genau wie vorher, wie es zu erwarten war.
Additionsverfahren
[Bearbeiten]
Nehmen wir hier die Variable (man kann aber genauso die Variable benutzen). Der y-Koeffizient in der ersten Gleichung ist 3 und in der zweiten 2. Wenn wir den ersten Koeffizient mit 2 multiplizieren und den zweiten mit -3 bekommen wir 6 und ihre Gegenzahl -6. Wenn wir beide Seiten der ersten Gleichung mit 2 multiplizieren, dann haben wir auf beiden Seiten das Gleiche gemacht und beide Seiten werden weiter gleich bleiben (siehe Gegenrechnungen). Ebenfalls wenn wir beide Seiten der zweiten Gleichung mit -3 multiplizieren, bleiben beide Seiten dieser Gleichung gleich:
Wenn wir jetzt die Summe der linken Seiten und die Summe der rechten Seiten beider Gleichungen berechnen, werden die Ergebnisse gleich sein:
Zauberei! Jetzt haben wir nur eine Gleichung mit einem Unbekannten, die wir sofort lösen können!
Wenn wir jetzt eine der beiden Anfangsgleichungen nehmen, können wir auch y berechnen. Nehmen wir die erste:
(x ist -2, wie wir gerade berechnet haben)
|+4
|:3
Die Lösung des Gleichungssystems lautet daher:
und
Tatsächlich kann man diese Werte in beiden Gleichungen einsetzen und feststellen, dass das Ergebnis stimmt. Ersetzen wir in beiden Gleichungen x durch -2 und y durch 5, dann bekommen wir eine wahre Aussage:
Es gibt kein anderes Zahlenpaar, der beide Gleichungen richtig löst, also die Lösung ist eindeutig! Ist es aber immer so? Das ist das Thema des nächsten Unterkapitels.
Graphische Lösung eines linearen Gleichungssystems
[Bearbeiten]Im Kapitel über lineare Funktionen wird erklärt, wie man in einem Koordinatensystem eine lineare Funktion mit Hilfe von zwei Punkten zeichnen kann (zwei Punkte sind eine hinreichende und notwendige Voraussetzung, um eine lineare Funktion zu definieren; daher reichen zwei Punkte um die Funktion zu zeichnen). Nehmen wir die erste Funktion vom folgendem Gleichungssystem:
(Funktion A) | |
(Funktion B) |
-
Funktion A
-
Funktion B
-
Funktion A und B
Man kann zwei Punkte für die Funktion finden, indem man willkürlich Werte für x angibt und die entsprechenden Werte für y findet. Für ist:
→ → → .
Für ist:
→ → → .
Wir haben also zwei Punkte der Funktion A: und . Diese Punkte können wir dann im Koordinatensystem zeichnen und auch die Gerade, die der Funktion entspricht, wie im Bild „Funktion A“.
Entsprechend kann man Punkte für die Funktion B finden. Für ist:
→ → → → .
Für ist :
→ → → → .
Wir haben also zwei Punkte der Funktion B: und . Diese Punkte können wir dann im Koordinatensystem zeichnen und auch die Gerade, die der Funktion entspricht, wie im Bild „Funktion B“.
Wenn wir jetzt beide Funktionen in einem Koordinatensystem zeichnen, dann bekommen wir das Bild „Funktion A und B“. Da kann man klar sehen, dass die Funktionen einander an einem einzigen Punkt schneiden, den Punkt . Dieser Punkt ist die Lösung des Gleichungssystems der Funktionen A und B. Leider kann man i.d.R. den - und den -Wert nicht genau ablesen, daher ist diese Methode nicht so genau, wie die drei Verfahren der vorherigen Absätzen.
Lösungsmenge eines linearen Gleichungssystems
[Bearbeiten]Gleichungssystem A | Gleichungssystem B | |
---|---|---|
Die Lösung des ersten linearen Gleichungssystems war und , des zweitens und . Geht es aber immer, dass ein Gleichungssystem eine Lösung hat? Die Antwort ist nein. Probieren wir das folgendes Gleichungssystem mit dem Einsetzungsverfahren zu lösen:
Gleichungssystem C |
---|
Lösung
→
→ → → !
Man sagt, dass die Aussage am Ende falsch ist. ist doch nicht gleich ! Das bedeutet, dass die beiden Gleichungen, die wir im Gleichungssystem haben ( und ), nicht gleichzeitig erfüllt werden können. Man sagt, dass das Gleichungssystem keine Lösung hat.
Es gibt allerdings noch eine Möglichkeit. Das Gleichungssystem kann unendlich viele Lösungen haben, wie im folgenden Beispiel:
Gleichungssystem D |
---|
Lösung
→
→ → →
Man sagt, dass die Aussage am Ende immer wahr ist. Egal wie viel ist, die beiden Gleichungen werden immer gelten. Man soll doch etwas vorsichtig sein. Wenn ist, dann ist (erste Gleichung → → → ). Wenn ist, dann ist (erste Gleichung → → → ). Für jedes gibt es ein bestimmtes und umgekehrt.
Allerdings gilt genau das Gleiche in der zweiten Gleichung: Wenn ist, ist ( → → → ). Wenn ist, dann ist ( → → → ). Egal welchen Wert man für benutzt, wird es für beide Gleichungen der gleiche Wert für als Lösung gelten (und umgekehrt). Es gilt nicht, dass alle Wertepaare (alle Punkte auf der Ebene) Lösungen des Gleichungssystems sind, sondern dass alle Lösungen der einen Gleichung auch Lösungen der anderen Gleichung sind.
Das war allerdings nicht der Fall, als wir eine Lösung des Gleichungssystems hatten (und auf gar keinen Fall, als wir keine Lösung hatten). Nehmen wir beispielsweise das Gleichungssystem A:
6
Da haben wir als Lösung und gefunden. Diese Lösung gilt gleichzeitig für beide Gleichungen. Tatsächlich wenn ist, dann gilt für die erste Gleichung ( → → →) aber auch für die zweite Gleichung ( → → →) . Wenn aber , dann gilt für die erste Gleichung ( → → →) . Für die zweite Gleichung hingegen gilt in diesem Fall: ( → → →) . Die beiden Gleichungen haben den gleichen Wert für y(den Wert 6), nur wenn ist. Man sagt, dass Gleichungssystem A und B eine Lösung haben, Gleichungssystem C keine und Gleichungssystem D unendlich viele Lösungen haben.
Ein lineares Gleichungssystem kann keine, eine oder unendlich viele Lösungen haben.
Viel besser kann man das Ganze verstehen, wenn man die graphischen Lösungen betrachtet.
-
Gleichungssystem A
-
Gleichungssystem B
-
Gleichungssystem C
-
Gleichungssystem D
Im Gleichungssystem A gibt es nur ein Wertepaar, das für beide Funktionen stimmt: . Wenn ist, dann ist für beide Funktionen. Für jeden anderen Wert von x stimmt der Wert von y nicht mehr überein. Beispielsweise für ist für die Funktion und für die Funktion . Es gibt nur ein Wertepaar, das für beide Funktionen eine Lösung ist, und dieses Wertepaar (also der Punkt ) ist die Lösung des Gleichungssystems.
Entsprechend hat auch das Gleichungssystem B nur eine Lösung, den Punkt (Wertepaar) , wie man eindeutig im entsprechenden Bild auch sehen kann. Das ist allerdings nicht der Fall für das Gleichungssystem C. Da laufen die Darstellungen der Funktionen im Koordinatensystem (die Geraden sind) parallel zueinander, sie treffen einander nie. Sie haben daher keinen gemeinsamen Punkt und das Gleichungssystem hat daher keine Lösung (man sagt, dass die Lösung die leere Menge ist). Im Gleichungssystem D hingegen sind alle Punkte der einen Funktion auch Punkte der anderen. Alle Wertepaare, die zu diesen Funktionen gehören, sind daher auch Lösungen des Gleichungssystems D. Das System hat somit unendlich viele Lösungen. Beide Funktionen sind in diesem Fall unterschiedliche Darstellungen der gleichen Funktion. Tatsächlich, wenn man beide Seiten der zweiten Funktion (des Systems D) durch 3 dividiert, bekommt man die erste Funktion:
.
Lösbarkeit eines linearen Gleichungssystems mit 2 Variablen
[Bearbeiten]Man soll zuerst beide Gleichungen in die sogenannte explizite Form umformen, also in der Form, in der y allein auf der linken Seite steht. Nehmen wir die Gleichungssysteme A, C und D des vorherigen Absatzes:
Gleichungssystem A | Gleichungssystem C | Gleichungssystem D | ||
---|---|---|---|---|
In der expliziten Form sehen diese Systeme wie im Folgenden aus:
Gleichungssystem A | Gleichungssystem C | Gleichungssystem D | ||
---|---|---|---|---|
Bei System A ist die Steigung unterschiedlich (-1 in der ersten Gleichung und -0,6 in der zweiten).
Wenn die Steigung der beiden linearen Funktionen unterschiedlich ist, dann hat das System mit Sicherheit genau eine Lösung.
Bei den Systemen C und D ist die Steigung überall die Gleiche (). Im System C haben die Gleichungen einen anderen y-Achsenabschnitt (+4 und +2). Im System D ist hingegen auch der y-Achsenabschnitt der beiden Gleichungen der gleiche (+4)
Wenn die Steigung der beiden linearen Funktionen die gleiche ist, gibt es zwei Möglichkeiten:
- Ist der y-Achsenabschnitt unterschiedlich, dann gibt es keine Lösung.
- Ist der y-Achsenabschnitt der gleiche, dann gibt es unendlich viele Lösungen.
Textaufgaben linearer Gleichungssysteme mit 2 Variablen
[Bearbeiten]In einem Café gibt es 8 Tische. Manche sind für 3 Personen und der Rest für 5 Personen. Insgesamt kann das Café 36 Personen bedienen. Wie viele 3 bzw. 5 Personen-Tische gibt es im Café?
Schauen wir die Denkweise genauer an. Die Anzahl der Tische ist bekannt, als auch die der Personen insgesamt. Was ist hier unbekannt (und letztendlich auch gefragt)? Wie viele Tische für 5 Personen und wie viele für 3 Personen es gibt. Für die Unbekannten in jedem mathematischem Problem benutzt man irgendwelche Symbole. Wir haben x und y benutzt, dass könnte aber genauso a und b, oder m und n, oder f und d oder irgendwas anders sein. Wichtig: Es gibt zwei Unbekannte, wir müssen also zwei verschiedenen Symbole dafür benutzen. Wenn es drei Unbekannte gibt, dann soll mal drei unterschiedlichen Symbole benutzen usw. (wie werden uns aber hier nur mit Gleichungssystemen mit zwei Unbekannten beschäftigen).
Am Anfang muss man definieren, was jedes Symbol darstellt. In dieser Aufgabe haben wir gesagt, dass die Tische für 3 Personen und y die Tische für 5 Personen sind:
x: die Tische für 3 Personen
y: die Tische für 5 Personen
Dieser Schritt sollte nicht so schwer sein. Man gibt einfach Namen (Symbole) für die unbekannten Sachen. Beim nächsten Schritt haben viele Menschen die größten Schwierigkeiten. Dabei ist die Sache nicht wirklich so schwer. Man soll das Problem vorsichtig lesen und den Text in die mathematische Sprache umsetzen. Dafür muss man nicht den ganzen Text verstehen, sondern auf Schlüsselworte beachten. In dieser Aufgabe steht, dass es 8 Tische gibt. Auch wenn man nicht wüsste, was ein Tisch ist, kann man schon schreiben, dass die Tische zusammen 8 sind. Welche Rechenart steht in Mathematik für zusammen? Die Addition. Also:
x+y=8
Wir haben zwei Unbekannte, also wir brauchen zwei Gleichungen, um die Aufgabe eindeutig zu lösen. Die zweite Gleichung zu erzeugen war in dieser Aufgabe nicht so leicht. Wir haben gesagt: Wenn es 2 Tische für 3 Personen gibt, dann sitzen an diesen Tischen 2⋅3=6 Personen, es 5 Tische für 3 Personen gibt, dann sitzen an diesen Tischen 5⋅3=15 Personen usw. Man merkt, dass damit wir die Personen berechnen, die Anzahl der Tische mit der Anzahl der Personen pro Tisch (hier 3 Personen pro Tisch) multiplizieren müssen. Wir wissen aber nicht, wie viele Tische für drei Personen es gibt. Wir haben aber doch ein Symbol dafür benutzt: das sind x Tische. Dieses Symbol muss man also mit der Anzahl der Personen pro Tisch (hier 3) multiplizieren, um durch einen Term zu zeigen, wie viele Personen an diesen Tischen sitzen können: 3x! Dass ist (noch) nicht eine bestimmte Zahl, das sind aber doch die Personen die an diesen x Tischen sitzen können. Entsprechend können an den y Tischen für 5 Personen insgesamt 5y Personen sitzen (Anzahl der Tische y mal Personen pro Tisch, hier 5). In der Aufgabe steht, dass das Café insgesamt 36 Personen bedienen kann. Also die Anzahl der Personen, die an den zwei Tischkategorien (eine Kategorie die 3-Personen Tische, zweite Kategorie die 5-Personen Tische) sitzen können ist insgesamt 36 Personen. Welche Rechenart wird hier angedeutet? Wieder Addition. Die Personen der beiden Kategorien zusammen (also plus) sind 36:
3x+5y=36
Wir haben also zwei Gleichungen und zwei Unbekannte.
x+y=8
3x+5y=36
Jetzt kann man eine der dargestellten Wege benutzen, um x und y herauszufinden. In unserem Beispiel haben wir das Ersetzungsverfahren benutzt.
Erzeugen wir das Gleichungssystem für noch ein paar Textaufgaben:
Iris ist 2,5 mal älter als ihr Bruder Andreas. Zusammengezählt sind ihre Altersjahren 14. Wie viele Jahren alt sind die beiden Geschwister?
Gefragt sind die Lebensalter der beiden Geschwister. Wir schreiben mit i das Lebensalter von Iris und mit a von Andreas. Iris ist 2,5 mal älter und zusammen sind die Jahre 18:
i=2,5⋅a und i+a=14
Dieses System lässt sich sehr leicht durch das Ersetzungsverfahren lösen. Wir ersetzen i in der zweiten Gleichung durch 2,5a (da i=2,5a, wie es schon in der ersten Gleichung steht):
i+a=18 → 2,5a+a=14 → 3,5a=14 (:3,5) → a=4 und sofort i=2,5a=2,5⋅4 → i=10 (also tatsächlich i+a=14)
Die Summe des Fünffachen einer Zahl und 4 ist so viel wie eine andere Zahl um 1 reduziert. Die Differenz des dreifachen der zweiten Zahl und 43 ist so viel wie die erste Zahl um 14 erhöht. Berechnen sie die Zahlen.
Viele finden solche Aufgaben extrem schwer. Dabei muss man einfach Schritt für Schritt vorgehen. Erst gibt man Symbole für die zwei unbekannten Zahlen.
e ist die erste Zahl
z ist die zweite Zahl
Gehen wir Schritt für Schritt vor:
Die Summe des Fünffachen einer Zahl.... Die erste Zahl haben wir e genannt. Das fünffache bedeutet 5e. Über die Summe wissen wir noch nichts, außer dass der erste Summand 5e sein wird.
Die Summe des Fünffachen einer Zahl und 4.... Hier erkennen wir den zweiten Summand: 4. Also bisher haben wir: 5e+4
Die Summe des Fünffachen einer Zahl und 4 ist so viel wie.... ...ist so viel wie in der mathematische Sprache umgesetzt ist nichts mehr und nichts mehr als das Symbol für gleich (=). Also bisher haben wir: 5e+4=
Die Summe des Fünffachen einer Zahl und 4 ist so viel wie eine andere Zahl um 1 reduziert. Die zweite (die "andere") Zahl haben wir z genannt und sie wird um 1 reduziert also z−1. Bisher haben wir: 5e+4=z−1 Hier endet der erster Satz. Wir haben also schon unsere erste Gleichung!
5e+4=z-1
Fangen wir jetzt mit dem zweiten Satz an: Die Differenz des dreifachen der zweiten Zahl.... Über die Differenz kenne wir nur den Minuend. Er ist das dreifache der zweiten Zahl. Die zweite Zahl haben wir z genannt, also ist ihr Dreifaches 3z. Bisher haben wir daher: 3z−...
Die Differenz des dreifachen der zweiten Zahl und 43 Jetzt haben wir auch den Subtrahend der Differenz: 3z−43
Die Differenz des dreifachen der zweiten Zahl und 43 ist so viel wie ...ist so viel wie bedeutet ist gleich: 3z−43=
Die Differenz des dreifachen der zweiten Zahl und 43 ist so viel wie die erste Zahl um 14 erhöht Die erste Zahl ist e und sie wird um 14 erhöht (also plus 14): 3z−43=e+14. Wir haben jetzt auch die zweite Gleichung! Das Gleichungssystem lautet:
5e+4=z−1
3z−43=e+14
Dieses System kann man dann mit einem der präsentierten Verfahren lösen. Die Antwort ist e=3 und z=20, wie man überprüfen kann:
5⋅3+4=20−1 ✔ und
3⋅20−43=3+14 ✔
Viele Menschen denken, dass solche Aufgaben schwer wären. Wie man hier sieht, wenn man die Aufgabe Schritt für Schritt löst, ist es nicht so schwer. Das braucht einfach etwas Konzentration, ist aber durchaus fast für jeden möglich.
In einer Flups gibt es 37 Tröpats. Manch davon haben 4 Hupals, die restlichen 7 Hupals. Die Flups beihaltet damit 190 Hupals. Wie viele Tröpats mit 4 bzw. 7 Hupals gibt es?
Man mag hier fragen, was zum Teufel Flups, Tröpats und Hupals sind. Meine Antwort ist dann eine weitere Frage: Ist diese Kenntnis für die Lösung der Aufgabe notwendig? Die Antwort ist ganz einfach NEIN! Wenn in einer Prüfungssituation jemand eine unbekanntes Wort trifft, soll man erst entscheiden, ob dieses Wort für die Lösung wichtig ist, sonst verliert man Zeit, die für eine Prüfung i.d.R. sehr wichtig ist. Ziel dieser Aufgabe ist darauf aufmerksam zu machen. In der Aufgabe wird NICHT gefragt, was Flups usw sind. Ḿan braucht es daher auch nicht wissen. Wichtig sind nur Schlüsselworte und -phrasen, wie z.B. In... gibt es, was darauf hinweist, dass die Tröpats insgesamt 37 sind. Der erste Schritt ist für jede Unbekannte ein Symbol einzusetzen. Wenn v die Tröpats mit 4 Hupals sind und s die Tröpats mit 7 Hupals, dann haben wir die erste und die zweite Gleichung, genau wie im ersten Beispiel in diesem Teilkapitel:
v+s=37
4v+7s=190
Das System kann man dann in einer beliebige Weise lösen. Die Antwort ist 23 Tröpats mit 4 Hupals und 14 Tröpats mit 7 Hupals (was das auch immer sein könnte ).
Geometrie der Ebene
[Bearbeiten]Kreis, Kreissektor, Kreisring
[Bearbeiten]-
Kreis
-
Kreisteile
-
Kreisring
Ein Kreis ist die Menge aller Punkten, die von einem Punkt M (Mittelpunkt genannt) den gleichen Abstand r (Radius genannt) haben. Formeln: u=2πr, A=πr². r ist der Radius. Hier wird mit d der Durchmesser bezeichnet. π ist eine Zahl (wie 2 oder 5,632), mit dem Unterschied, dass man diese Zahl (π) nicht genau angeben kann. π ist ungefähr 3,14159... Sie ist das Verhältnis (also der Bruch) des Umfangs zum Durchmesser .
Schneidet man einen Kreis wie einen Torten-schnitt (also zwei Schnitte von Mittelpunkt aus bis am Rand), dann hat man einen Kreissektor. Schneidet man ein Stück mit einer Strecke von einem zu einem anderen Punkt des Kreises, hat man ein Kreissegment. Im Bild steht für den Bogen das englische Wort "arc". Schneidet man von der Mitte eines Kreises einen kleineren Kreis mit den selben Mittelpunkt ab, dann bekommt man ein Kreisring.
Anwendung der Formeln
[Bearbeiten]Variablen in der Geometrie
[Bearbeiten]Bei allen Formeln gibt es sogenannten „Variablen“. Es geht in der Regel um ein Buchstabe, der für irgendwas steht. Hier schreiben wir, wofür diese Symbole in der Geometrie stehen.
- Ein großes A, steht in der Regel für die Fläche (genauer für den Flächeninhalt)
- Ein u steht i.d.R. für den Umfang (also wie lang das Rum-herum der Figur ist)
- a, b, c usw. stehen i.d.R. für die Seiten (auch Länge oder Breite) von Figuren
- h (oder H) steht i.d.R. für die Höhe einer Figur. Oft gibt es dann ein Index, z.B. hb, was dann bedeutet, dass diese die Höhe für die Seite b ist.
- r (oder R) steht i.d.R. für den Radius eines Kreises.
- d steht bei einem Kreis für den Durchmesser des Kreises, bei einem Parallelogramm (oder Rechteck, Quadrat, Trapez, Vieleck) aber für die Diagonale!
- Griechische kleine Buchstaben (α, β, γ, δ, ε, θ, φ) stehen i.d.R. für Winkel.
- Allerdings ist mit dem griechischen Buchstabe π die Kreiszahl bezeichnet (π≈3,1415...).
Formel Einsetzen in der ebenen Geometrie
[Bearbeiten]Bei einer Aufgabe sind immer gewisse Informationen gegeben, z.B.:
- Ein Zimmer ist 4m lang und 2,8m breit. Finden Sie seinen Umfang und seine Fläche heraus!
In solchen Problemen soll man die gegebenen Zahlen in die Formel sinnvoll einsetzen. Das bedeutet, dass man die Buchstaben in der Formel durch Zahlen ersetzt. In diesem Beispiel sucht man in einer Formelsammlung das Rechteck (da ein Zimmer die Form eines Rechtecks hat).
In der Figur, die man in der Formelsammlung finden kann, kann man sehen, dass mit a die Länge und mit b die Breite bezeichnet wird. In der Formelsammlung kann man auch die Formel für den Umfang finden:
u=2a+2b
Die Länge a ist gegeben: 4m. Die Breite b auch: 2,8m. Wenn nichts zwischen einer Zahl und einer Variable steht (hier z.B. 2a), dann ist mal gemeint (2 mal a). Man schreibt also an der Stelle von a und b die Zahlen 4 und 2,8:
, da wie m mit m addiert haben)
In der Spalte für die Fläche steht beim Rechteck:
A=a·b also
, da wie m mit m multipliziert haben)
Man soll auch auf die Einheiten aufpassen: |
Der Umfang ist eine Strecke, also er wird in Streckeneinheiten gemessen (hier m), die Fläche hingegen in Flächeneinheiten (hier in m²).
Andererseites kann es sein, dass eine Größe in verschiedenen Einheiten gegeben wird, z.B.:
- Die Länge eines Rechtecks ist 5dm und seine Breite 32cm. Finden Sie seinen Umfang und seine Fläche heraus!
Das Einsetzen von Werten in einer Formel setzt voraus, dass die Einheiten übereinstimmen. Man muss z.B. überall in der Formel Werte in Stunden haben und nicht irgendwo Stunden, an einer anderen Stelle Minuten usw. Hier muss man den Wert einer der beiden Seiten umwandeln, z.B.:
32cm=32:10 dm = 3,2 dm
Jetzt sind beide Seiten (Länge und Breite) in dm und es kann weiter berechnet werden:
u=2a+2b und A=a·b
Die Länge a ist gegeben: a=5dm. Die Breite b haben wir jetzt auch in dm umgerechet: b=3,2dm:
, da wie hier dm mit dm addiert haben) und
,da wie hier dm mit dm multipliziert haben)
Hätten wir die Einheiten (die 32cm) nicht umgewandelt, hätten wir Probleme mit dem Einheit am Ende oder sogar ein völlig falsche Antwort:
- Bei der Multiplikation hätten wir:
- FALSCH! Wenn man hier dm² oder cm² als Einheit schreibt, ist das Ergebnis völlig falsch, die Einheit, die wir schreiben hätten sollen, wäre dm⋅cm, das wäre zwar richtig, aber diese Einheit wird für die Fläche nie benutzt.
- Bei der Addition hätten wir:
- FALSCH! Hier ist sogar der Wert völlig falsch! Der richtige Wert, wie wir gesehen haben, ist 16,4 dm (oder 164 cm). Man kann nicht dm und cm addieren oder subtrahieren, genauso wie man nicht dm und kg addieren kann! Addieren (oder subtrahieren) kann man nur Sachen, die genau die gleichen Einheiten haben!
Nicht nur bei Multiplikation oder Addition müssen die Einheiten übereinstimmen, sondern auch bei Division und allen anderen Rechenarten. Bei Multiplikation und Addition haben wir das Beispiel gerade eben gesehen (Fläche und Umfang des Rechtecks am letzten Beispiel). Ein Beispiel für Division, ist wenn man die Fläche eines Rechtecks durch seine Länge dividiert, um die Breite zu berechnen. Wenn die Fläche 6cm² und die Länge 30mm, dann kann man NICHT die Division so durchführen: , da 6 in cm gegeben ist und 30 in mm. Man soll zuerst z.B. die mm in cm umwandeln (30mm=3cm) und dann die Division durchführen: (das sind dann cm, da wir cm² durch cm dividiert haben und man die Hochzahl und dann kann man die Einheiten kürzen: .
Wir können also schreiben:
Bei Rechnungen müssen die Einheiten immer übereinstimmen! |
Bei einer Rechnung (oder Gleichung) muss man immer erst kontrollieren, ob die Einheiten übereinstimmen, dann die Einheiten, die nicht übereinstimmen, in übereinstimmenden Einheiten umwandeln und erst am Ende die Rechnung durchführen! Das gilt immer (auch bei der Schluss-und Prozentrechnung)!
In Physik benutzt man sogar Einheitssysteme, das ist aber für dieses Buch ein fortgeschrittenes Thema.
Umformen in der ebenen Geometrie konkret
[Bearbeiten]Bei manchen Aufgaben muss man die Formel umformen, z.B.:
Der Umfang eines Quadrats ist 12cm. Berechnen Sie die Seite und die Fläche!
Wir finden die Figur (hier Quadrat) in der Formelsammlung und fangen mit der Formel der gegebenen Eigenschaft (hier Umfang) an:
u=4a
Hier ist der Umfang gegeben, man braucht die Seite. Zwischen 4 und a steht nichts, also ist mal gemeint. Die Gegenrechnung von mal ist durch und der Umfang ist 12, also:
Seiten in einer Gleichung kann man selbstverständlich umtauschen, also:
also
a=3 cm
Die Formel für die Fläche, die man auch in der Formelsammlung finden kann ist dann:
also
Auch wenn die Seite erst nicht gefragt wäre, wäre es doch notwendig diese erst einmal zu berechnen, um dann mit Hilfe des Wertes für die Seite auch die Fläche berechnen zu können.
Umformen in der ebenen Geometrie abstrakt
[Bearbeiten]Abstrakt umformen bedeutet hier, Umformungen nur (oder fast nur) mit Symbolen durchzuführen. Wir haben z.B. eine Formel für die Berechnung der Fläche eines Kreises, wenn sein Radius bekannt ist, aber wie sollte umgekehrt allgemein der Radius berechnet werden, wenn die Fläche gegeben ist?
Wir finden die Figur (hier Kreis) in der Formelsammlung und fangen mit der Formel der gegebenen Eigenschaft (hier Fläche) an:
Wir brauchen eine Formel für den Radius, also das entsprechende Symbol (r) muss am Ende allein bleiben. Der erste Schritt in diesem Beispiel dafür, wäre das π von der rechten auf die linke Seite zu bringen:
Wir haben hier die Gegenrechnung von mal benutzt (also Division). Die Gegenrechnung fürs Quadrat ist Wurzel ziehen, das wird unser nächster Schritt sein:
Seiten in einer Gleichung kann man selbstverständlich umtauschen, also:
Diese ist also die allgemeine Formel für die Berechnung des Radius eines Kreises, wenn seine Fläche gegeben ist.
Noch ein Beispiel für die Berechnung der Länge a eines Rechtecks, wenn sein Umfang u und die Breite b gegeben sind:
also
In diesem Fall müssen wir selbstverständlich darauf aufpassen, dass die Einheiten übereinstimmen.
Ähnlichkeit von Figuren
[Bearbeiten]Zwei geometrische Figuren sind ähnlich, wenn sie die gleiche Seitenanzahl haben und alle entsprechenden Winkel gleich zueinander sind. Wenn dazu zumindest eine Seite (und daher auch alle andere) der beiden Figuren gleich ist, dann sagt man, dass die Figuren kongruent sind.
Das Wort "gleich" wird bei geometrischen Figuren nicht benutzt, weil es dann nicht klar ist, ob nur alle Winkel oder doch auch alle Seiten gleich sind.
Bei ähnlichen Figuren gilt, dass das Verhältnis entsprechender Seiten eine Konstante Zahl ist. Wenn wir die Seiten aus dem Bild benutzen, wird es klar, was damit gemeint ist. Nehmen wir die Seite b aus dem Bild links und die entsprechende Seite b' aus dem Bild rechts. Verhältnis in Mathematik bedeutet Bruch. Der Bruch der beiden Seiten ist dann . Werden die beiden Seiten in irgendeiner Weise gemessen, wird dann festgestellt, dass der Bruch ca. 1,5 ist. Es gilt also: .
Wenn wir ein anderes Paar von entsprechenden Seiten nehmen, wird das Verhältnis (der Bruch) wieder 1,5 sein: .
Das Verhältnis (der Bruch) von entprechenden Seiten (z.B. oder ) ist eine konstante Zahl, hier 1,5. Das gilt genauso für das dritte Paar von entsprechenden Seiten: .
Diese Regel gilt nicht nur in Dreiecken sondern in allen geometrischen Figuren, die ähnlich sind. Im folgenden Bild sieht man verschiedene Figuren. Alle Figuren mit der gleichen Farbe sind ähnlich.
Strahlensatz
[Bearbeiten]Die Ähnlichkeit von Figuren findet Anwendung im sogenannten "Strahlensatz".
Nehmen wir zwei geraden, die einander am Schnittpunkt Z schneiden, wie die Geraden BB' und AA' im Bild links. Diese Geraden werden von zwei weiteren parallel zueinander Geraden AB und A'B' geschnitten. So entstehen zwei ähnliche Dreiecke, ABZ und A'B'Z. Da die Dreiecke ähnlich sind, gilt:
Diese Formel zeigt, was bei der Ähnlichkeit von Figuren behauptet wurde: Das Verhältnis (der Bruch) von entsprechenden Seiten bleibt konstant.
Der Strahlensatz findet zahlreiche Anwendungen in Physik und Mathematik. Hier erwähnen wir "nur" seine Anwendung bei der Vermessung des Abstandes zwischen Mond und Erde.
Eine Bemerkung dazu: Das erste in der Geschichte bekanntes Buch, in dem Geometrie als auf wenigen Sätzen aufgebautes geordnetes Wissen dargestellt wird, ist das Werk "Elemente" von Euklid. In diesem Werk wird erst der Strahlensatz bewiesen und dann auf die Ähnlichkeit von Figuren angewendet.
Zusammengesetzte Figuren
[Bearbeiten]Satz von Pythagoras
[Bearbeiten]Geschichte des Satzes von Pythagoras
[Bearbeiten]Obwohl der Satz nach dem griechischen Philosoph Pythagoras genannt wird, wurde er nicht von ihm entdeckt. Der Satz wurde zumindest 1000 Jahre früher benutzt. Es gibt Tontafel aus Babylonien, die sogenannte pythagoreische Tripeln beinhalten. Eine pythagoreische Tripel sind drei Zahlen, die den Satz von Pythagoras erfühlen. Die Entdeckung zeigt eine hochentwickelte antike Zivilisation, Die Berechnungen mancher Tripel ohne technische Mittel sind ziemlich kompliziert und brauchen viel Geduld und Zeit.
Formulierung des Satzes von Pythagoras
[Bearbeiten]Der Satz von Pythagoras lautet:
In einem rechtwinkeligem Dreieck ist die Summe der Quadrate der Katheten gleich dem Quadrat der Hypotenuse.
Der Satz gilt daher nur bei Dreiecken, die einen rechten Winkel haben.
Selbstverständlich versteht man den Satz viel besser, wenn man eine Figur sieht:
Die Seiten an der rechten Winkel nennt man Katheten (im Bild mit a und b), die Seite gegenüber Hypotenuse (im Bild mit c).Es gilt:Nehmen wir drei Zahlen: 2, 3 und 4. Sind diese eine pythagoräische Tripel? Die größte Zahl sollte die längste Seite sein, die Hypotenuse, also c. Hier ist es die Zahl 4. Dann wären die Katheten 2 und 3. Die entsprechenden Quadrate der Katheten sind 2²=4 und 3²=9, ihre Summe 4+9=13. Das Quadrat der Hypotenuse wäre 4²=16. Es gilt 2²+3²≠4² (13 ist nicht gleich 16!). Das bedeutet: Es gibt kein rechtwinkeliges Dreieck, dessen Katheten 2 und 3 und dessen Hypotenuse 4 Einheiten (z.B. Meter) sind.
2,3 und 4 sind daher keine Pythagoreische Tripel. Wie ist es mit 3, 4 und 5? Sind diese Zahlen eine Pythagoräische Tripel? 3²+4² = 25 aber auch 5² = 25. Es gilt also: 3²+4²=5². Das bedeutet nicht nur, dass es ein rechtwinkeliges Dreieck gibt, dessen Katheten 3 und 4 und dessen Hypotenuse 5 Einheiten ist, sondern auch umgekehrt, dass ein Dreieck, dessen Seiten 3, 4 und 5 Einheiten sind, einen rechten Winkel haben muss!
In den Aufgaben muss man aufpassen. Wenn die Katheten angegeben sind und die Hypotenuse gefragt, dann kann man die gegebene Formel benutzen:
- Bei einem rechtwinkeligen Dreieck sind die Katheten 6 und 8 cm lang. Berechnen Sie die Hypotenuse!
wobei und also
Wenn aber die Hypotenuse und eine Kathete gegeben sind, dann muss man die Formel erst umformen:
- Bei einem rechtwinkeligen Dreieck sind die eine Kathete 21mm und die Hypotenuse 0,29dm lang. Berechnen Sie die andere Kathete!
Erst müssen wir auf die Einheiten aufpassen: 0,29dm=29mm
also
Also: Wenn beide Katheten angegeben sind müssen wir die Quadrate addieren, wenn nur eine Kathete und die Hypotenuse, müssen wir vom größeren Quadrat das kleinere subtrahieren. In beiden Fällen ziehen wir dann die Wurzel des Ergebnisses.
Beweis des Satzes von Pythagoras
[Bearbeiten]Geometrie des Raums
[Bearbeiten]Grundbegriffe
[Bearbeiten]Dimension
[Bearbeiten]Wir haben schon in der Geometrie der Ebene den Begriff der Strecke als auch verschiedene Figuren auf einer ebenen Fläche (z.B. Quadrat, Kreis, Dreieck, Rechteck) kennengelernt. Für eine Strecke braucht man nur die Länge angeben (z.B. 2,4dm), dann hat man sie vollständig beschrieben. Alle Strecken mit dieser Länge sind die gleiche Sache (man sagt in Mathematik: Sie sind Kongruent).
Bei einem Rechteck hingegen reicht die Länge nicht aus. Es gibt unendlich viele Rechtecke mit der gleichen Länge und eine andere Breite. Diese Rechtecke sind nicht mehr die gleiche Sache. Sie haben auch einen anderen Flächeninhalt. Sie sind nicht kongruent. Man braucht daher bei Flächen zwei Zahlen, die Abstände beschreiben, beim Rechteck ist das die Länge und die Breite.
Wenn man jetzt eine Figur im Raum betrachtet, z.B. einen Quader, dann reichen die Länge und die Breite wieder nicht aus. Da braucht man noch einen Abstand, die Höhe. Wenn die Höhe anders ist, dann ist auch das Volumen anders.
Die Anzahl der Abstandswerte, die man braucht, um eine Figur vollständig zu beschreiben, nennt man Dimension.[1]
Eine Strecke ist eine eindimensionale Figur: Allein ein Abstand (die Länge), reicht aus, um sie zu beschreiben. Ein Rechteck (und alle ebene Figuren) ist eine zweidimensionale Figur: Man braucht zwei Abstände (Länge und Breite), um sie zu beschreiben. Ein Quader (und alle Figuren, die Raum besetzen) ist eine dreidimensionale Figur: Man braucht drei Abstände (Länge, Breite und Höhe), um sie zu beschreiben. In unserem Bild eines Quaders wird die Länge mit a, die Breite mit b und die Höhe mit c bezeichnet.
Obwohl wir Menschen uns nicht mehrere Dimensionen vorstellen können, gibt es in der Physik theoretische Modelle, die noch mehrere Dimensionen haben. Beispielsweise setzt die allgemeine Relativitätstheorie die Zeit als eine weitere Dimension des sogenannten Zeitraums voraus! Die Stringtheorie kann sogar 11 Dimensionen voraussetzen!
- ↑ Allerdings wird in der Physik nicht nur der Abstand, sondern auch andere Größen als Dimensionsgrundlagen benutzt, z.B. ist in der Relativitätstheorie die Zeit eine vierte Dimension der sogenannten Raumzeit
Körper
[Bearbeiten]Ein Gegenstand in der Geometrie wird Körper genannt, wenn für seine Beschreibung drei Abstände notwendig und hinreichend sind.
Notwendig bedeutet, dass weniger Abstände nicht genügend sind, um den Körper zu beschreiben. Man kann nicht einen Quader nur mit Länge und Breite vollständig beschreiben.
Hinreichend bedeutet, dass man nicht mehrere Abstände oder eine andere Dimension für die Beschreibung braucht. Wenn die Länge, die Breite und die Höhe des Quaders gegeben sind, braucht man nicht auch die Raumdiagonale angeben (sie wird schon von den anderen drei Abständen bestimmt).
Jede dreidimensionale Figur ist ein (geometrischer) Körper. In diesem Text wird auch das Wort „Raumfigur“ dafür benutzt.
Kante
[Bearbeiten]Im Kapitel über die Geometrie der Ebene haben wir den Begriff der Seite einer ebenen Fläche gesehen. Bei einem Quadrat sind alle Seiten gleich, bei einem Rechteck gibt es eine Länge und eine Breite. Die Strecken am Rand einer ebene Figur wurden also Seiten genannt.
Die Strecken am Rand eine Raumfigur werden aber doch Kanten genannt. Das Wort „Seite“ wäre in diesem Fall verwirrend: man wüsste dann nicht, ob mit „Seite“ die Seitenfläche oder die Seitenstrecke gemeint ist. Daher benutzt man das Wort „Kante“ für die Strecken. In unserem Bild eines Quaders wird die Länge mit a, die Breite mit b und die Höhe mit c bezeichnet. a,b und c sind daher Kanten des Quaders. Es gibt in diesem Bild 4 Kanten, die so lang wie a sind, 4 Kanten, die so lang wie b sind, und 4 Kanten, die so lang wie c sind.
Für die ebenen Flächen, die die Figur begrenzen, benutzt man die Worte „Grundfläche“, „Seitenfläche“ und „Deckfläche“. Es gibt selbstverständlich auch Raumfiguren, die von keinen ebenen Flächen begrenzt werden, wie beispielsweise die Kugel.
Ecke und Raumdiagonale
[Bearbeiten]Oberfläche
[Bearbeiten]Grundfläche
[Bearbeiten]Grundfläche ist die Fläche, die im Bild unten (am Grund) steht. Bei Figuren deren Grenzflächen alle die gleiche Form haben (wie z.B. in einem Quader, wo alle Grenzflächen Rechtecke sind), kann jede beliebige Fläche der Figur als Grundfläche benutzt werden.
Wenn es eine Grenzfläche gibt, die sich von den anderen unterscheidet (wie z.B. bei der Pyramide in unserem Bild: alle Flächen außer einer sind Dreiecke), dann wird i.d.R. diese Fläche als Grundfläche bezeichnet.
Wenn es eine Grundfläche gibt, dann kann ihr gegenüber nur ein Punkt oder eine ganze Fläche stehen. Wenn ihr gegenüber eine ganze Fläche steht, dann nennt man diese Fläche Deckfläche (da sie an der „Decke“ ist). Die Deckfläche kann auch rund sein. Wenn der Grundfläche gegenüber nur ein Punkt liegt (wie in der Pyramide am Bild), dann nennt man diesen Punkt Spitze.
Seitenfläche und Mantel
[Bearbeiten]Wenn es eine Grundfläche gibt, dann nennt man jede der restlichen Flächen Seitenfläche (außer der Deckfläche, wenn es eine gibt). Alle Seitenflächen zusammen nennt man Mantel. Der Mantel kann allerdings auch aus runden und nicht nur ebenen Flächen bestehen, wie z.B. in einem Zylinder (der auch eine Deckfläche hat, die ebenfalls ein Kreis ist) oder einem Kegel (der keine Deckfläche hat, dafür eine Spitze).
Körpernetz
[Bearbeiten]Wenn man die Grenzflächen eines Körpers abwickelt, so dass eine (komplizierte) ebene Figur entsteht, dann nennt man diese ebene Figur Körpernetz (oder einfach Netz). Das ist immer möglich, wenn die Grenzflächen ebene Figuren sind, allerdings nicht immer, wenn die Grenzflächen rund sind. Das ist möglich bei einem Quader, einem Zylinder oder einem Kegel aber nicht möglich bei einer Kugel oder einem Torus.
Gerade und schiefe Körper
[Bearbeiten]-
A: gerades Prisma
B: schiefes Prisma -
Gerade Pyramide
-
Schiefe Pyramide
-
Gerader Kegel
-
Schiefer Kegel
Wenn es bei einem Körper eine Grundfläche gibt, dann gibt es gegenüber entweder eine Fläche oder einen Punkt. Wenn der gegenüberliegende Punkt oder der Mittelpunkt der gegenüberliegenden Fläche direkt oberhalb (also senkrecht nach oben) vom Mittelpunkt der Grundfläche liegen, dann sagt man, dass der Körper gerade ist, sonst dass er schief ist.
Raumfiguren
[Bearbeiten]Würfel
[Bearbeiten]-
Würfel
-
Würfelnetz
-
Spielwürfel
Definition
Eine geschlossene Raumfigur, deren Grenzfläche aus 6 kongruente („gleiche“) Quadrate besteht, nennt man Würfel.
Formeln
Mit wird die Länge der Kante bezeichnet.
Volumen:
Oberfläche:
Kantensumme:
Raumdiagonale(rot im Bild):
Flächendiagonale(grün im Bild):
Quader
[Bearbeiten]-
Quader
-
Netz eines Quader
-
Eine quaderförmige
Mauerziegel
Definition
Eine geschlossene Raumfigur, deren Grenzfläche aus 3 Paare paarweise kongruente („gleiche“) gegenüberliegende Rechtecke besteht, nennt man Quader.
Formeln
Mit wird hier die Länge, mit die Breite und mit die Höhe bezeichnet (wie im Bild).
Volumen:
Oberfläche:
Kantensumme:
Raumdiagonale:
Flächendiagonalen: , ,
Prisma
[Bearbeiten]-
Prisma
-
Prismanetz
-
Optisches Prisma
Definition
Eine geschlossene Raumfigur, die durch Parallelverschiebung eines ebenen Vielecks entlang einer nicht in dieser Ebene liegenden Geraden im Raum entsteht, nennt man Prisma. Die Höhe ist der Abstand zwischen Grund- und Deckfläche.
Formeln
Es gibt viele verschiedenen Prismen, daher sollte man dafür die allgemeineren Formeln benutzen, die sich am Ende dieses Teilkapitels befinden.
Pyramide
[Bearbeiten]-
Pyramide
-
Pyramidennetz
-
Einer der ältesten
bekannten Pyramiden -
Maya Pyramide
Definition
Wenn man alle Punkte des Umfangs eines Vieleckes mit einem Punkt (genannt „Spitze“ oder „Scheitel“) außerhalb der Ebene des Vieleckes verbindet, dann entsteht die Grenzfläche einer Pyramide. Das Vieleck bildet dann i.d.R. die Grundfläche, die Dreiecke, die durch die Verbindung des Punktes mit dem Umfang entstehen, sind dann die Seitenflächen. Höhe ist der Abstand zwischen Spitze und Grundfläche.
Formeln
Es gibt viele verschiedenen Pyramiden, daher sollte man dafür die allgemeineren Formeln benutzen, die sich am Ende dieses Teilkapitels befinden.
Zylinder
[Bearbeiten]-
Zylinder
-
Zylindernetz
-
Ein klappbarer (fast) zylinderförmiger Hut
Definition
Eine geschlossene Raumfigur, die durch Parallelverschiebung einer ebenen runden Figur (z.B. eines Kreises oder einer Ellipse) entlang einer nicht in dieser Ebene liegenden Geraden im Raum entsteht, nennt man allgemeinen Zylinder. Das Wort Zylinder allein wird i.d.R. für den Körper benutzt, der durch Parallelverschiebung eines Kreises entsteht. Die Höhe ist der Abstand zwischen Grund- und Deckfläche.
Formeln (für einen geraden Kreiszylinder)
Mit wird hier die Höhe, mit der Radius der Grundfläche bezeichnet (wie im Bild), ist die Mantelfläche:
Volumen:
Oberfläche:
Kegel
[Bearbeiten]-
Gerader Kegel
-
Kegelnetz
-
Spielkegel [1]
- ↑ (die allerdings nicht die Form eines Kegels haben...)
Definition
Wenn man alle Punkte des Umfangs einer runden ebenen Figur mit einem Punkt (genannt „Spitze“ oder „Scheitel“) außerhalb der Figurebene verbindet, entsteht die Grenzfläche eines (allgemeinen) Kegels. Die runde Figur ist dann die Grundfläche und die Fläche, die durch die Verbindung des Punktes mit dem Umfang entsteht, ist der Mantel. Wenn die runde ebene Figur ein Kreis ist, dann spricht man von einem Kreiskegel (in der Schulmathematik oft einfach Kegel genannt). Höhe ist der Abstand zwischen Spitze und Grundfläche. Mit s bezeichnet man die „Mantellinie“ bei einem geraden Kegel.
Formeln (für einen geraden Kegel)
Mit wird hier die Höhe, mit der Radius der Grundfläche bezeichnet (wie im Bild), ist die Mantelfläche:
Volumen:
Oberfläche:
(wobei s die sogenannte „Mantellinie“ ist)
Kugel
[Bearbeiten]-
Kugel
-
Kugel mit Längen- und Breitenkreisen
-
Die Erde mit Längen- und Breitenkreisen
-
Kugelförmige Murmeln
-
Gewehrkugel[1]
-
Ein kugelförmiger Basketball
- ↑ (die allerdings nicht kugelförmig sind)
- ↑ (die allerdings nicht winkeltreu ist)
Für einen Kugel kann man nicht ein Netz auf einer Ebene zeichnen (nur näherungsweise), was der berühmte Mathematiker und Physiker Carl Friedrich Gauß bewiesen hat.
Definition
Eine Raumfigur mit einer Grenzfläche, deren Punkte alle von einem Punkt in der Mitte der Raumfigur (Mittelpunkt genannt) den gleichen Abstand haben (Radius genannt), nennt man Kugel.
Formeln
Mit wird der Radius bezeichnet (wie im Bild).
Volumen:
Oberfläche:
Die platonischen Körper
[Bearbeiten]
|
- ↑ (auch Hexaeder genannt)
Die platonischen Körper sind Raumfiguren, dessen Grenzflächen kongruent („gleich“) zueinander regelmäßige Vielecke sind. Man hat schon in Altertum bewiesen, dass es genau 5 davon gibt: der Würfel, den wir schon gelernt haben (mit 6 Quadrate als Grenzflächen), das Tetraeder (mit vier gleichseitigen Dreiecke als Grenzflächen), das Oktaeder (mit acht gleichseitigen Dreiecke als Grenzflächen), das Dodekaeder (mit zwölf regelmäßigen Fünfecke als Grenzflächen) und das Ikosaeder (mit zwanzig gleichseitigen Dreiecke als Grenzflächen). Da alle Grenzflächen kongruent sind, kann man nicht durch irgendein Merkmal eine Fläche von der anderen oder eine Kante von den andern unterscheiden. Wegen dieser und anderer Eigenschaften haben diese Körper die Philosophen und Wissenschaftler seit der antiken Zeit interessiert.
Eine schöne Animation der Körper und ihrer Körpernetze findet man hier![1]
- ↑ (Vorsicht:dieses Link kann den Browser bei alten Computer verlangsamen)
Andere Figuren
[Bearbeiten]-
Torus
-
Halbkugel
-
Ellipsoid
-
Paraboloid
Selbstverständlich gibt es unendlich viele anderen Raumfiguren, hier erwähnen wir noch den Torus, die Halbkugel, die Ellipsoiden und die Paraboloiden.
Volumen- und Oberflächenregeln
[Bearbeiten]Für alle Körper, die eine Grund- und eine (parellele zur Grundfläche) kongruente („gleiche“) Deckfläche haben, gilt, dass das Volumen die Grundfläche mal die Höhe ist:
Genauer formuliert gilt diese Regel für alle Körper, die durch Parallelverschiebung einer ebenen Fläche entstehen. Für diese Körper gilt dann, dass die Mantelfläche die Summe deren Teilflächen ist und die gesamte Oberfläche . Für die Teilflächen sollte dann man die Formeln aus der Geometrie der Ebene benutzen.
Für alle Körper, die eine Grundfläche und eine gegenüber liegende Spitze haben, gilt, dass das Volumen ein drittel des Produkts der Grundfläche und der Höhe ist:
Genauer gesagt muss dazu gelten, dass die Abstände zwischen Spitze und den Punkten auf dem Umfang der Grundfläche gerade sein sollen. Für diese Körper gilt dann, dass die Mantelfläche die Summe deren Teilflächen ist und die gesamte Oberfläche . Für die Teilflächen sollte dann man die Formeln aus der Geometrie der Ebene benutzen.
Intuitiver Beweis der Formel des Volumens des Quaders
[Bearbeiten]1 cm³ (auch „Kubikzentimeter“ genannt, Bild links) ist ein Würfel, dessen Kante 1cm ist.
Das Wort „Kubik“ stammt aus dem griechischen Wort für Würfel. Als Hochzahl bedeutet „Kubik“ hoch 3, also Kubikzentimeter (cm³), Kubikmeter (m³) usw.
Wie man jetzt im Bild rechts sehen kann, wenn man einen Quader hat, dessen Länge 3cm, dessen Breite 2cm und dessen Höhe 2cm ist, dann beinhaltet dieser Quader 12 Würfel, je 1cm³, also ist das Volumen 12cm³. Man kann daraus folgen, dass das Volumen eines Quaders allgemein die Länge mal die Breite mal die Höhe ist:
Anwendung der Formeln
[Bearbeiten]Formel Einsetzen in der Raumgeometrie
[Bearbeiten]Die Länge eines Lineals ist 3,1 dm, seine Breite 2,5 cm, seine Dicke 2 mm. Berechnen sie die Gesamtlänge seine Kanten, seine Oberfläche und sein Volumen!
Wie wir in der Geometrie der Ebene schon gelernt haben, kann man in solchen Aufgaben das Volumen durch Einsetzen berechnen. Von der Aufgabe kann man schon erschließen, dass das Lineal die Form eines Quaders hat. Hier benutzt man das Wort „Dicke“ anstatt „Höhe“, also wird für diese Dimension ein anderer Name benutzt. Man kann also die Formeln, die in der Formelsammlung für den Quader stehen, benutzen:
Volumen:
Oberfläche:
Kantensumme:
(Mit wird hier die Länge, mit die Breite und mit die Dicke bezeichnet)
Wie aber schon im entsprechenden Kapitel erwähnt, muss man davor warnen, falschen Einheiten anzuwenden! Die Einheiten muss man erst überprüfen und, wenn notwendig, umwandeln. Das ist in dieser Aufgabe schon der Fall:
Wir können alle drei Längenwerte entweder in dm oder in cm oder in mm benutzen. Lass uns hier alle in mm berechnen (wie wir es Kapitel über Einheiten gelernt haben):
Erst jetzt können wir diese Werte in die Formel einsetzen:
Volumen:
Oberfläche:
Kantensumme:
Umformen in der Raumgeometrie konkret
[Bearbeiten]Bei manchen Aufgaben muss man die Formel umformen (wie bei der Geometrie der Ebene), z.B.:
Das Volumen eines (geraden) Zylinders ist 530cm³, seine Höhe 70mm. Wie viel ist seine Fläche?
In der Formelsammlung findet man die Formel für die Fläche:
Oberfläche:
Wenn man die Formel betrachtet, findet man schon das Symbol für die Höhe. Diese aber reicht nicht für die Berechnung des Volumens aus! Man braucht auch den Radius der Grundfläche. Daher wendet man sich an den anderen Vorgaben der Aufgabe. Dort findet man den Wert nicht nur für die Höhe, sondern auch fürs Volumen .
Volumen:
Die Werte sowohl fürs Volumen als auch für die Höhe sind gegeben, daher kann man durch Umformen auch den Wert für den Radius berechnen:
Die vorsichtige Leserin (oder Leser) hat vielleicht hier schon gemerkt, dass für die Höhe der Wert 7 anstatt 70 benutzt wurde. Wenn sie (oder er) noch den Grund nicht versteht, sollte sie bitte noch mal den vorherigen Unterkapitel über Einsetzten noch mal lesen!
Jetzt kann man leicht die Oberfläche berechnen:
Umformen in der Raumgeometrie abstrakt
[Bearbeiten]Kubikwurzel und weitere Wurzeln
[Bearbeiten]Das Volumen eines Würfels ist 530cm³. Wie viel ist seine Fläche?
Diese Aufgabe ist ähnlich zur Aufgabe im letzten Unterkapitel über Umformen. Die Formeln für den Würfel sind:
.
Man muss erst die Kante des Würfels berechnen, um seine Fläche berechnen zu können. Man kann dafür die Formel fürs Volumen benutzen, , da der Wert des Volumens auch gegeben ist. Welche ist aber die Gegenrechnung von „hoch 3“? Diese Gegenrechnung nennt man Kubikwurzel oder noch besser dritte Wurzel:
Dann kann man leicht die Oberfläche berechnen:
Entsprechend zur Wurzel (die besser Quadratwurzel genannt wird), ist die dritte Wurzel (auch Kubikwurzel genannt) nur dann eine genaue Zahl, wenn die Zahl unter der Wurzel eine sogenannte Kubikzahl ist, wie z.B.:
1(=1³), 8(=2³), 27(=3³), 64(=4³), 125(=5³), 216(=6³), 343(=7³), 512(=8³), 729(=9³), 1000(=10³), 0,008(=0,1³), 9,261(=2,1³)...
Daher gilt:
Die Kubikwurzel von jeder anderen Zahl (die keine Kubikzahl ist) ist eine irrationale Zahl.
Diese Idee der Gegenrechnung kann man auf alle Hochzahlen erweitern:
oder sogar (!):
Zur Vereinfachung der Symbole benutzt man keine Zahl am Anfang des Wurzelzeichens, nur wenn es um die Quadratwurzel geht:
ist gleichbedeutend wie
Herzlichen Dank an alle, deren Bilder ich in diesem Kapitel benutzt habe!
Wachstums- und Zerfallsprozessen
[Bearbeiten]Wachstum
[Bearbeiten]- China hatte im Jahr 1966 eine Bevölkerungsgröße von circa 750 Millionen Menschen. Das jährliche Wachstum lag bei circa 2,5%. Wie groß wäre die Bevölkerung im Jahr 2016, wenn das Wachstum gleich geblieben wäre? Was wären die Ergebnisse eines solchen Wachstums?
Zwischen 1966 und 2016 liegen 50 Jahre. Berechnen wir Schritt für Schritt die Bevölkerung für die ersten drei Jahre mit Hilfe der Schlussrechnung (direkte Proportionalität):
Der Anfangswert (Jahr 1966) ist 750 Millionen (100%). In einem Jahr ist die Bevölkerung um 2,5% gewachsen, also im Jahr 1967 wäre die Bevölkerung 102,5%:
Für das nächste Jahr 1967 ist von diesem Wert auszugehen, um die Bevölkerung 1968 zu berechnen. Die Bevölkerung wäre 2,5% gewachsen im Vergleich zum 1967 (und nicht 1966). Die Bevölkerung im Jahr 1967 (768,75 Millionen) ist daher der neue Anfangswert (100%):
Für das dritte Jahr geht man ähnlich vor:
Wenn man das Ergebnis nach 50 Jahren berechnen will, müsste man mit der Strategie die gleiche Rechnung insgesamt 50 mal durchführen! Es gibt aber einen schnelleren Weg, die Aufgabe mit Hilfe eines Taschenrechners zu lösen. Betrachten wir unsere Ergebnisse (man muss immer mit der entsprechende schon gemachte Schlussrechnung vergleichen):
Jedes Jahr multiplizieren wir einmal weiter mit , jedes Jahr wird die Hochzahl um 1 größer! Das erste Jahr ist die Hochzahl von 1, das zweite Jahr 2, das dritte Jahr 3 und so weiter. Man kann sofort erkennen, dass die Hochzahl von nach 50 Jahren 50 sein wird und daher:
.
So groß wäre die Bevölkerung Chinas nach 50 Jahren!
Hier ist die Periode (also die Zeit in der die Bevölkerung um 2,5% wächst) ein Jahr. In anderen Aufgaben kann sie etwas anderes sein (Woche, Monat, Tag, Stunde und so weiter). Wenn der Anfangswert A ist, der Wert am Ende E, der Prozentsatz des Wachstums P und die Anzahl der Perioden n (wie viele Perioden wir haben), dann kann man folgende Formel schreiben:
Man kann schon sehen, dass die Bevölkerung Chinas sehr groß gewesen wäre, wenn das Wachstum so hoch geblieben wäre. Die Wirtschaft Chinas war schon 1966 geplant und die zuständigen Personen haben damals schon festgestellt, dass die Wirtschaft ein solches Wachstum der Bevölkerung nicht würde verkraften können. Die Leute würden an Hunger sterben oder man würde Kriege führen müssen, um die Bevölkerung zu verringern oder neue Ressourcen zu erschließen. Deshalb haben die Zuständigen die „ein-Kind-Politik“ eingeführt, die das Wachstum der Bevölkerung ohne Hungertod oder größere Kriege in gewissen Grenzen gehalten hat. Die Bevölkerung ist doch gewachsen, aber nicht so viel.
Ein kleiner (oder doch sehr großer?) Kommentar:
Manche könnten sagen, dass die Verdoppelung nach 50 Jahren nicht so viel ist. Wenn jemand dieser Meinung ist, sollte er die Bevölkerung nach 1000 Jahren berechnen (also, die Hochzahl sollte 1000 und nicht mehr 50 sein) und versuchen, sich vom Ergebnis nicht schockieren zu lassen ... Hier ist die Berechnung für 500 Jahre:
also Trillionen!
Allerdings könnte man die Haltung von der Bevölkerung in ärmeren Staaten psychologisch gesehen schon verstehen: Sie haben keine Kenntnisse und glauben, dass mehrere Kinder eine bessere Zukunft gewährleisten, beziehungsweise die Versorgung im Alter besser sicherstellen. Oft spielt dabei die Religion eine dazu verstärkende Rolle.
Was ist aber mit den Wirtschaftswissenschaftlern? Die notwendigen Mathematikkenntnisse haben diese Personen mit Sicherheit. Dummheit nach dem berühmten Spruch von Einstein mag man ihnen grundsätzlich nicht gleich unterstellen wollen. Trotzdem behaupten sie, dass ein unendliches wirtschaftliches Wachstum (was mit Sicherheit auch ein unendliches Wachstum zum Beispiel des Energieverbrauchs und der Ressourcen voraussetzt) für das Überleben der Wirtschaft notwendig sei!
Die logische Schlußfolgerung ist daher, dass aus der nicht verfügbaren Unendlichkeit ein zwangsläufiges Scheitern dieser Wirtschaftsstrategie folgen muss, also kein Überleben möglich ist. Die Folgen für die Bevölkerung zu bedenken, bleibt den LeserInnen überlassen ...
Zurück zum mathematischen Problem, dazu eine Methode, die nicht funktioniert, also ein falscher Weg:
Viele versuchen, diese Aufgabe so zu lösen, indem sie 2,5% mit 50 multiplizieren, also 50 mal miteinander addieren. Kommen wir so zum selben Ergebnis?
50⋅2,5%=125%, 100%+125%=225%=2,25, 750 Millionen ⋅ 2,25=1687,5 Millionen.
Das ist allerdings falsch!
Der Fehler liegt darin, dass man 2,5% immer auf die Bevölkerung von 1966 bezieht. Die Bevölkerung aber wächst jedoch jedes Jahr um 2,5% in Bezug auf das vorherige Jahr und nicht auf 1966. Daher muss man jedes Mal mit 1,025 und nicht einmal mit 2,25 multiplizieren. Die Rechnung ist mal 1,025 hoch 50 und nicht mal 50, was ein ziemlich unterschiedliches Ergebnis bedeutet.
Zerfall
[Bearbeiten]Radioaktivität
Zerfall ist das Gegenteil von Wachstum. Zerfall liegt vor, wenn jede Periode (Jahr, Monat und so weiter) die vorhandene Menge um den gleichen Prozentsatz weniger wird. Ein geeignetes Beispiel dafür ist die Radioaktivität:- Das Iod-Isotop 131I (wird in nuklear-medizinischen Therapie benutzt) wird täglich um 8,3% weniger. Wie viele Atome des Isotops bleiben nach 3 Wochen, wenn wir am Anfang 250000 Atome haben?
Wir können hier sofort die Formel des vorherigen Absatzes benutzen [E = A · (1+P:100)n], indem wir berücksichtigen, dass wir einen Zerfall und kein Wachstum haben, also die Atome werden weniger statt mehr. Wir müssen daher minus statt plus benutzen:
(hier müssen wir auf eine ganze Zahl runden; warum denn? Die Hochzahl allerdings ist 21 und nicht 3; wieso?)
Bei der Radioaktivität gibt es eine für das jeweilige Isotop charakteristische Periode, die sogenannte „Halbwertszeit“. Das ist die Zeit, die notwendig ist, damit die Anzahl der radioaktiven Atome sich halbiert, also auf 50% abnimmt, daher der Name. Bei 131I ist diese Zeit 8 Tage. Bei Atomen, die in Kernkraftwerken benutzt werden, ist diese Zeit deutlich größer (zum Beispiel 4,5 Milliarden Jahren für 238U Uran). So entsteht radioaktiver Müll, mit dem nicht einfach umzugehen ist. Dieser Müll kann kaum mit technisch oder kommerziell vertretbarem Aufwand entsorgt werde. Oft wird er illegal auf Gefahr der Gesundheit der Bevölkerung entsorgt. Das und die Gefahr eines Unfalls (wie z.B. neulich in Fukushima), machen die Nutzung der Kernspaltung sehr gefährlich. Interessant ist dabei allerdings, dass ein einwandfrei funktionierendes Kernkraftwerk allein durch den Betrieb keine Radioaktivität nach außen freisetzt, das passiert erst bei entsprechenden Pannen.
Kohle enthält ebenfalls radioaktive Atome als unerwünschte Beigabe, wie übrigens praktisch jegliches Material, welches durch Bergbau gefördert wird. Mit der Abluft von Kohlekraftwerken wird durch den reinen Betrieb also mehr Radioaktivität in der Umwelt freigesetzt als durch ein Kernkraftwerk gleicher Leistung. Das Kohlekraftwerk produziert allerdings keinen zusätzlichen radioaktiven Müll und setzt keine zusätzliche Radioaktivität bei einer Panne frei.
Zinsen und Kapitalertragssteuer (KESt.)
[Bearbeiten]Zinsrechnung Begriffe
[Bearbeiten]Die Symbole: Guthaben G0 (Geld im Konto am Anfang), Zinsen Z, effektive Zinsen eZ, Zinssatz Zs, effektiver Zinssatz eZs, Guthaben G1 (Geld am Ende des ersten Jahres).
Der Begriff Zinsen hat mit den Bankinstitutionen zu tun, der Begriff KESt. mit dem Staat. Eine Bank ist eine Institution, die Geschäfte mit Geld macht. Als Privatkunde kann jede Person ihr Geld in einer Bank anlegen. Das Geld befindet sich dann auf einem sogenannten Konto. Die Bank gibt dem Kunden Zinsen, die nach einem jährlichen Prozentsatz, den sogenannten Zinssatz berechnet wird. Der Grundwert für den Zinssatz ist das Guthaben am Anfang G0. Die Zinsen werden durch die Staat versteuert. Diese Steuer, Kapitalertragssteuer (KESt.) genannt, ist im deutschsprachigem Raum ca. 25% der Zinsen und dieser Prozentsatz wird im Folgenden immer benutzt.
Es gibt verschiedene Gründe, warum die Bank jedes Jahr den Kunden Zinsen gibt. Einerseits verliert das Geld durch die Inflation (Erhöhung der Preise) an seinen Wert, andererseits erzielen die Banken durch Investitionen und Kredite einen Gewinn, der ein Vielfaches der Zinsen ist.
Wie schon erwähnt, die Zinsen werden versteuert, daher bleiben im Ḱonto nicht die ganzen Zinsen, die die Bank gibt, sonder ein Teil davon, die sogenannten effektiven Zinsen. Da die Steuer 25% ist, sind die effektiven Zinsen der Rest 75% der Zinsen, die die Bank gibt (75% ist das 0,75-fache oder der Zinsen.
Guthaben am Anfang G0 ist das Geld, das ein Privatkunde in ein Bankkonto anlegt.
Zinsen Z ist das Geld, das die Bank jedes Jahr dem Kunden dazu gibt, sozusagen als Belohnung für sein Vertrauen an der Bank (und als Teil des Gewinns, den die Bank mit diesem Geld macht).
Zinssatz Zs ist ein Prozentsatz. Er wird benutzt, um die Zinsen, die die Bank gibt, zu berechnen. In diesem Fall ist das Guthaben am Anfang (für das erste Jahr G0) der Grundwert (also 100%).
Kapitalertragssteuer KESt. ist eine Steuer auf die Zinsen. Sie wird vom Staat genommen, um Funktionen des Staates zu finanzieren. in diesem Buch wird sie immer 25% sein. Der Grundwert allerdings ist in diesem Fall nicht das Guthaben am Anfang, sondern die Zinsen Z, die die Bank dem Kunden gibt.
Effektive Zinsen eZ ist das Geld, das dem Kunden von den Zinsen übrig bleibt, nachdem die Zinsen versteuert werden. Wenn nichts Anderes auf dem Konto passiert, ist das Guthaben nach einem Jahr G1 die Summe des Guthabens am Anfang G0 und der effektiven Zinsen.
Effektiver Zinssatz eZs ist ein Prozentsatz. Er ist 75% (also das 0,75-fache oder ) des Zinssatzes Zs, da 25% der Zinsen als KESt. vom Staat genommen werden. Wenn nichts Anderes auf dem Konto passiert, wird das Guthaben nach einem Jahr G1 um so viel mehr Prozent als das Guthaben am Anfang G0, wie der effektive Zinssatz.
G1 = G0 + eZ | KESt.= Z ⋅ | eZs= Zs ⋅ = Zs ⋅ | |
eZ = Z – KESt. | G1 = G0 · | eZ= Z ⋅ = Z ⋅ |
Zinsen
[Bearbeiten]Wenn man Geld auf einem Konto hat, bekommt man jedes Jahr Zinsen. Die Bank benutzt das Geld vom Konto, um es zu investieren. Teil des Gewinns aus den Investitionen bekommt der Kontoinhaber als Zinsen (zu diesem Thema lernen wir mehr im Kapitel über Wachstum).
Die Zinsen werden nach einem Jahreszinssatz berechnet. Wenn man z.B. 4000€ im Konto (Anfangswert: 100%) hat und der Zinssatz 0,5%, dann bekommt man am Ende des Jahres:
Zinsen.
KESt., effektive Zinsen, Guthaben nach einem Jahr
[Bearbeiten]KESt.
Daher bleiben auf dem Konto nicht 20€ mehr am Ende des Jahres sondern:
effektive Zinsen.
(nicht vergessen: , also 3/4 der Zinsen bleibt im Konto und 1/4 geht zum Staat als Steuer KESt.)
Diese Zinsen, die auf dem Konto bleiben, nennt man effektive Zinsen, den entsprechenden Zinssatz, effektiven Zinssatz. Man kann die effektiven Zinsen offenbar auch einfacher berechnen: eZ = Z – KESt.=20€−5€=15€
Das bedeutet dann, dass das Geld am Ende des Jahres (Guthaben G1):
G1=4000€+15€=4015€ ist.
Man kann dann als Formel schreiben:
Die Symbole: Guthaben G0 (Geld im Konto am Anfang), Zinsen Z, effektive Zinsen eZ, Zinssatz Zs, effektiver Zinssatz eZs, Guthaben G1 (Geld am Ende des ersten Jahres).
G1 = G0 + eZ | Z = G0 · Zs : 100 | KESt.= Z ⋅ | eZs= Zs ⋅ = Zs ⋅ |
eZ = Z – KESt. | eZ = G0 · eZS : 100 | G1 = G0 · | eZ= Z ⋅ = Z ⋅ |
Effektiver Zinssatz
[Bearbeiten]Da der Zinssatz Zs und der effektiver Zinssatz eZs Prozentsätze sind, ist es oft verwirrend, wenn man den effektiven Zinssatz als Prozentanteil des Zinssatzes berechnet. Daher fangen wir mit einem Beispiel an, in dem die effektiven Zinsen berechnet werden.
In einem Konto ist das Guthaben am Anfang 4000€, der Zinssatz 5%. Berechnen sie die effektiven Zinsen!
Berechnen wir erst die Zinsen. In diesem Fall ist das Guthaben der Grundwert (Wert am Anfang, 100%).
.
Wenn die effektiven Zinsen berechnet werden, sind sie 75% der Zinsen (hier ist der Grundwert 100% die Zinsen und nicht das Guthaben am Anfang):
.
Wie viel % von 4000 € können diese 150 € sein?
Hier ist der Grundwert das Guthaben am Anfang. Da der Grundwert (100%) hier das Guthaben G0 ist (4000€), ist dieser Prozentsatz (3,75%) ein Anteil des Guthabens G0. 150€ sind die effektiven Zinsen, daher ist 3,75% der effektiver Zinssatz, also der Prozentsatz des Guthabens, der am Ende im Konto dazu bleibt. Die effektiven Zinsen sind 75% der Zinsen. Man könnte dann vielleicht denken, dass die effektiven Zinsen mit der folgenden Schlussrechnung zu berechnen wären:
FALSCH!!
Wir wissen schon, dass die effektiven Zinsen 150€ sind. Das Ergebnis ist eindeutig falsch. Wie so? Wir haben in der Schlussrechnung schon € in der linken Spalte, Prozentsätze (%) in der rechten und das gegebene in einer Ziele. Es sollte doch richtig funktionieren. Was ist hier schief gegangen?
Die Antwort ist, dass die Prozentsätze sich auf einen unterschiedlichen Grundwert beziehen. Die Zinsen sind 5% des Guthabens, die effektiven Zinsen 75% der Zinsen. In der rechten Spalte stehen nicht gleichen Sachen!
FALSCH!!
Was können wir machen, damit die Schlussrechnung doch stimmt? Einfach Prozentanteile benutzen, die sich auf den gleichen Grundwert beziehen. Eine Möglichkeit ist das Guthaben G0 als Grundwert zu benutzen. Die Zinsen sind 5% des Guthabens und die effektiven Zinsen 3,75% (wie wir schon gesehen haben).
RICHTIG!!
Eine andere Möglichkeit ist, die Zinsen als Grundwert zu benutzen. Wie viel Prozent sind die Zinsen, wenn sie mit sich selbst verglichen werden? 100% selbstverständlich. Die Zinsen sind 100% der Zinsen. Wenn man eine Sache mit sich selbst vergleicht, hat man die ganze Sache, also 1, also 100%. Die effektiven Zinsen hingegen sind 75% der Zinsen:
RICHTIG!!
Jetzt ist es leichter zu erklären, wie der effektiver Zinssatz eZs direkt berechnet werden kann, wenn der Zinssatz gegeben ist. In der folgenden Schlussrechnung stehen überall Prozentanteile. An jeder Spalte werden aber die gleichen Grundwerte benutzt, daher stimmt die ganze Rechnung:
RICHTIG!!
Wurde der effektiver Zinssatz einmal so berechnet, kann man die effektiven Zinsen sofort berechnen, ohne erst die Zinsen berechnen zu müssen:
.
Sogar das Guthaben nach einem Jahr kann sofort und ohne weitere Zwischenschritte berechnet werden. Das Guthaben am Anfang ist 100% und wird um 3,75% mehr. Daher ist das Guthaben nach einem Jahr 103,75% des Guthabens am Anfang(100+3,75=103,75):
.
In all den letzten vier Schlussrechnungen und auch in einigen davor, wird auch der Weg für Fortgeschritten, also ohne Schlussrechnung, gezeigt (der zweite Teil der Gleichung in der Berechnung in Klammer).
Dieser hier gezeigte Weg, das Guthaben nach einem Jahr zu berechnen, ist bei den Umkehraufgaben unvermeidlich, wie im entsprechenden Kapitel gezeigt wird. Wenn der effektiver Zinssatz nicht gegeben ist, dann soll er erst berechnet werden, wie in diesem Abschnitt schon gezeigt.
Wenn in einer Aufgabe der Zinssatz gefragt und der effektiver Zinssatz gegeben ist, wird genau die gleiche Schlussrechnung, wie für den effektiven Zinssatz, (angepasst) benutzt:
RICHTIG!!
Mit diesem Wissen können auch Formeln erzeugt werden, die allerdings nicht notwendig und eher verwirrend sind, wenn man sich mit der Prozentrechnung gut auskennt (was allerdings bei solchen Aufgaben notwendig und daher unvermeidlich ist)
.
.
.
usw.
Zinsen Umkehraufgaben
[Bearbeiten]In einem Konto ist das Guthaben nach einem Jahr G1 6368,53€, der Zinssatz 0,6%. Berechnen Sie das Guthaben am Anfang, die Zinsen Z1, die effektiven Zinsen eZ1 und die Kapitalertragssteuer KESt.1 in diesem Jahr.
In dieser Aufgabe ist es notwendig, erst den effektiven Zinssatz zu berechnen.
(des Guthabens am Anfang).
Das Guthaben wird daher jedes Jahr nicht um 0,6% mehr (was die Bank gibt), sondern 0,45% mehr (was nach der Versteuerung und den Abzug der KESt. übrig bleibt). Daher ist das Guthaben am Ende des ersten Jahres 100%+0,45%=100,45% (100% am Anfang plus 0,45% eZs). Das Guthaben G0 am Anfang (Grundwert 100%) ist in diesem Fall gefragt:
.
Durch Umformen der Formel, die wir in den Definitionen für die Berechnung des Guthabens nach einem Jahr G1 gelernt haben, können wir ganz leicht die effektiven Zinsen berechnen:
()
Mit Hilfe der Schlussrechnung können wir dann die ganzen Zinsen berechnen (was die Bank gibt):
.
Durch Umformen der Formel, die wir in den Definitionen für die Berechnung der effektiven Zinsen eZ1 gelernt haben, können wir ganz leicht die KEST. berechnen:
Es gibt viele Wege die Umkehraufgaben zu lösen. Allerdings ist es absolut notwendig in diesen Aufgaben erst den effektiven Zinssatz zu berechnen (wenn er nicht schon gegeben ist!). Eine andere Schlussrechnung für die Berechnung der Zinsen sehen wir im Folgenden. Der Leser sollte daran denken, warum diese Berechnung stimmt (einfach daran denken, wie viel % jeder Wert ist!):
.
Und noch ein Kommentar: Bei einer Aufgabe muss man nicht die Fragen so wie sie in der Aufgabe stehen nacheinander beantworten. Man sollte an die Zwischenschritte denken. Hier haben wir beispielsweise erst den effektiven Zinssatz berechnet (was zwar nicht gefragt wird, für die Lösung aber absolut notwendig ist). Allerdings haben wir erst die effektiven Zinsen und dann die ganzen Zinsen berechnet (obwohl in die umgekehrte Reihenfolge gefragt wird...).
Die Entwicklung der Zinsen über mehrere Jahre wird im Kapitel Zinseszins erklärt.
Zinseszins
[Bearbeiten]Wenn man kein Geld aufhebt oder einzahlt, kann man das Guthaben nach beliebigen Jahren mit Hilfe der Formel [En = A ∙ (1+P:100)n] berechnen.
(A ist hier das Kapital am Anfang, E das Guthaben nach n Jahren, P der Zinssatz)
- Berechne das Guthaben in einem Konto nach 20 Jahren, wenn das Kapital am Anfang 100000€ ist und der effektive Zinssatz 0,45%. Wie groß sind die Zinsen Z?
E = A ⋅ (1+P:100)n = 100000€ ⋅ (1+0,45:100)20 ≈ 109395,34€
(Warum muss man hier auf 2 Nachkommastellen runden?)
Die Zinsen kann man dann leicht berechnen: Z=E − A=109395,34€ − 100000€ = 9395,34€
Die Bank benutzt unseres Geld, um Geld zu investieren, zum Beispiel, um Geld anderen auszuleihen. Die Bank aber verlangt einen viel höheren Kreditzinssatz als den Zinssatz, den sie für unseres Geld im Konto gibt.
- Berechne, wie viel Geld eine Bank nach 20 Jahren gewinnt, wenn sie 100000€ mit 2,5% Zinssatz ausleiht.
E = A ⋅ (1+P:100)n = 100000€ ⋅ (1+2,5:100)20 ≈163861,64€
Der Gewinn für die Bank ist daher: 163861,64€ − 100000€ ≈ 63861,64€ Das ist eindeutig viel mehr, als das Geld, das die Bank dem Kontoinhaber zurückgibt! Das reicht aber doch nicht aus! Banken dürfen mit unserem Geld mehrere Kredite vergeben. Quasi schöpfen sie so fiktives Geld mit jedem bereitgestellten Kredit. Sie dürfen, sagen wir mal, zehn Kredite vergeben. Sofern die Kreditgeber alles samt Zinsen zurückzahlen, ist der reine Gewinn für die Bank:
10 ⋅ 63861,64€ − 9395,34€ ≈ 629221,10€
Natürlich können Kredite ausfallen, werden also nicht zurückgezahlt. Ein solcher Ausfall ist zunächst einmal das Risiko der Bank. Zudem hat die Bank die Angestellten und die Infrastruktur (Bankgebäude, Computersysteme etc) zu finanzieren.
Ein Kommentar noch finde ich hier allerdings notwendig:
Diesen nicht gerade kleinen Gewinn rechtfertigen die Banken durch das genannte Risiko, das sie beim Ausleihen übernehmen. Je höher das Risiko des Kredits, desto höher der Kredit-Zinssatz.
Das Risiko wird aber schon dadurch reduziert, dass mehr Kredite vergeben werden, als Geld angelegt wurde. Die Tatsache, dass die Banken bei der letzten Finanzkrise doch Geld vom Steuerzahler bekommen haben, um einen Bankrott abzuwenden, ohne die geringste Forderung, das Geld zurückzugeben, zeigt eindeutig, dass sie das Risiko dem Staat übertragen haben, als etwas schief gegangen ist. Dass etwas schief geht, wird allerdings bei der angedeuteten Geldschöpfung durch Banken immer wieder der Fall sein wird.
Lageparameter
[Bearbeiten]Lageparameter Einführung
[Bearbeiten]Durchschnitt (arithmetisches Mittel)
[Bearbeiten]Fangen wir mit einem Beispiel an:
- Die Familien eines kleinen Dorfes haben Kirschen geerntet. Die Ernte für die verschiedenen Familien war: 54kg, 65kg, 48kg, 76kg, 52kg, 65kg, 45kg. Sie haben allerdings vereinbart, dass jede Familie doch gleich so viele Kirschen bekommt. Wie viel bekommt jede Familie?
Um diese Frage zu beantworten, soll man erst die ganze Ernte berechnen, also die Teilernten addieren. Dann wird die ganze Ernte auf die Anzahl der Familien geteilt. So wird jede Familie gleich so viele Kirschen bekommen. Das Ergebnis nennt man Durchschnitt.
- (das sind kg)
Jede Familie bekommt dann ca. 57,86 kg.
Den Durchschnitt (auch arithmetisches Mittel genannt) mehrerer Werte berechnet man, indem man ihre Summe durch ihre Anzahl (wie viele Werte wir haben) dividiert:
Median (Zentralwert)
[Bearbeiten]Den Median (auch Zentralwert genannt) mehrerer Werte findet man, indem man die Werte zuerst der Größe nach ordnet (z.B. vom kleineren zum größeren) und dann den Wert in der Mitte der Reihe wählt.
Ein Beispiel!
- Das Gewicht der Schüler in einer Klasse ist: 54kg, 65kg, 48kg, 76kg, 52kg, 65kg, 45kg. Wie viel ist der Median?
Zuerst der Größe nach ordnen!
45, 48, 52, 54, 65, 65, 76
(ALLE Werte schreiben, also zwei oder mehr mal schreiben, wenn der Wert mehrmals vorkommt; jeden Wert muss man schreiben, so oft wie er vorkommt)
Der Wert in der Mitte ist 54. Es gibt 3 Werte links und 3 Werte rechts. Also 54 ist genau in der Mitte. Daher ist 54kg der Median!
Was ist aber, wenn die Anzahl der Werte eine gerade Zahl ist, wenn wir z.B. 12 Werte haben (12 ist eine gerade Zahl) und nicht 7 wie vorher (7 ist eine ungerade Zahl). Wenn man 7 Werte hat (oder irgendeine andere ungerade Zahl) dann gibt es genau eine Zahl in der Mitte. Bei gerader Anzahl der Werte gibt es doch 2 Zahlen in der Mitte. In diesem Fall wird als Median der Wert definiert, der genau zwischen den beiden Zahlen in der Mitte steht, also der Durchschnitt der beide Zahlen. Schauen wir ein Beispiel an!
- Das Gewicht der Schüler in einer Klasse ist: 52kg, 65kg, 48kg, 76kg, 52kg, 65kg, 45kg, 65kg, 45 kg, 45kg, 78kg, 69kg. Wie viel ist der Median?
Zuerst der Größe nach ordnen!
45, 45, 45, 48, 52, 52, 65, 65, 65, 69, 76, 78
(ALLE Werte schreiben, also jeden Wert schreiben, so oft wie er vorkommt)
Hier gibt es zwei Werte in der Mitte, 52 und 65. Der Median ist genau in der Mitte also die beide Werte addieren und durch 2 dividieren:
Modus (Modalwert)
[Bearbeiten]Der Modus (auch Modalwert genannt) von mehreren Werten ist der Wert, der am häufigsten vorkommt.
Ein Beispiel!
- Das Gewicht der Schüler in einer Klasse ist: 54kg, 63kg, 48kg, 76kg, 52kg, 63kg, 45kg. Wie viel ist der Modalwert?
Hier kommt 63 zwei mal vor, alle andere Werte kommen nur einmal vor. Daher ist 63kg der Modus.
Was ist aber, wenn mehrere Werte öfters vorkommen? Noch ein Beispiel!
- Das Gewicht der Schüler in einer Klasse ist: 52kg, 65kg, 48kg, 76kg, 52kg, 65kg, 45kg, 65kg, 45 kg, 45kg, 78kg, 69kg.
Hier kommt 45 drei mal vor, 65 drei mal vor, 52 zwei mal vor und die restlichen Werte nur ein mal vor. 45 und 65 kommen am öftesten vor. Daher sind sie beide Modalwerte. 52 hingegen kommt nicht so oft vor wie 45 und 65 (also „nur“ zwei mal), daher ist 52 kein Modalwert. Es gilt also:
Modalwerte (Modi): 45kg und 65kg
Vergleichen von Mittelwerten
[Bearbeiten]Weicht der Durchschnitt vom Median stark ab, dann ist die Verteilung ungleichmäßig. Weicht der Durchschnitt vom Median nicht stark ab, dann kann man eine eher gleichmäßiger Verteilung nicht ausschließen. (Vorausgesetzt, dass alle Werte positiv sind)[1]
Um zu verstehen, was das bedeuten soll, schauen wir folgende vier Säulendiagramme an:-
1: Ungleichmäßige Verteilung
-
2: relativ gleichmäßige Verteilung
-
3: relativ gleichmäßige Verteilung
-
4: Ungleichmäßige Verteilung
Im ersten Diagramm kommt der Reihe nach vier mal die eins, vier mal die zwei, vier mal die vier, zwei mal die sechs, ein mal zwanzig und ein mal Hundert. Der Median ist also 3, der Durchschnitt 10. Die Verteilung ist ziemlich ungleichmäßig, Median und Durchschnitt weichen stark ab.
Im zweiten Diagramm kommt der Reihe nach acht mal die sieben, sieben mal die acht und ein mal die achtzehn. Der größte Wert (18) ist ca. 2,5 mal wie der kleinste (7). Der Median ist 7,5 und der Durchschnitt 10. Die Verteilung ist relativ gleichmäßig, der Median und der Durchschnitt sind nah zueinander.
Im dritten Diagramm kommt der Reihe nach acht mal die fünf, zwei mal die zehn, vier mal die fünfzehn und dann ein mal siebzehn und ein mal 23. Der größte Wert (23) ist ca. 4,5 mal wie der kleinste (5). Der Median ist 7,5 und der Durchschnitt 10. Die Verteilung ist relativ ungleichmäßig, der Median und der Durchschnitt sind aber wieder nah zueinander.
Im vierten Diagramm kommt der Reihe nach sechs mal die eins, zwei mal die zwei, sieben mal die zehn und dann ein mal 80. Der größte Wert (80) ist 80 mal wie der kleinste (1). Der Median ist 6 und der Durchschnitt 10. Die Verteilung ist stark ungleichmäßig, der Median und der Durchschnitt sind aber relativ nah zueinander.
Nur im ersten Diagramm weichen Median und Durchschnitt stark voneinander ab, da können wir sicher sein, dass die Verteilung ungleichmäßig ist. In den anderen drei Diagrammen können wir feststellen, dass ein relativ kleiner Unterschied zwischen Median und Durchschnitt nicht aussagekräftig sein kann, da wir sowohl ein relativ gleichmäßige als auch eine relativ ungleichmäßige Verteilung haben können. Aber auch bei großen Unterschieden zwischen Median und Durchschnitt können wir immer noch nicht sagen, ob eine Ungleichmäßigkeit auch innerhalb der obersten Hälfte vorhanden ist oder nicht.Wenn z. B. 50 Werte 1 sind und 49 Werte 1000, dann ist der Durchschnitt (495,45) extrem größer als der Median (1), es sind aber immerhin fast die Hälfte der größeren Werte gleich.
Ein gutes Beispiel solcher Unterschiede ist die Vermögensverteilung in Europa und in der Welt. In Europa ist die Ungleichmäßigkeit in Deutschland und Österreich ziemlich ausgeprägt, wie ein Studium der europäischen Zentralbank gezeigt hat. Das erste Diagramm könnte wohl die Verteilung in diesen zwei Ländern repräsentieren. Was die Welt betrifft, sind nach einigen Studien die Ungleichmäßigkeiten noch (und viel) stärker.
Der Vergleich zwischen Durchschnitt und Median kann seine Aussagekraft über die Ungleichmäßigkeit der Verteilung (sogar völlig) verlieren, wenn manche Werte negativ sind. Das einfachste Beispiel dafür, ist, wenn wir drei Werte haben: −8, 1 und 10. In diesem Fall sind sowohl Durchschnitt als auch Median gleich 1, die Verteilung ist allerdings extrem ungleichmäßig. Beim Vermögen würde diese Verteilung beispielsweise bedeuten, dass eine Person stark verschuldet, eine knapp nicht verschuldet und eine reich ist. Der Vergleich zwischen Median und Durchschnitt ist in diesem Fall nutzlos.
Boxplot
[Bearbeiten]Ein Boxplotdiagramm hilft bei der Darstellung von statistischen Daten. Mit einem Boxplotdiagramm bekommt man einen schnellen aber etwas groben Überblick über die Verteilung der Daten. Im Bild kann man mit einer dicken senkrechten Linie den Median sehen. Das „Box“ fängt links dort, wo ¼ der Daten stehen und endet rechts dort, wo ¾ der Daten stehen. Dazu gibt es zwei senkrechte Linien, die den kleinsten und den größten Wert zeigen. Dazu kann es auch „Ausreißer“ geben, also Daten die zu groß oder zu klein sind.
Den Median (auch Zentralwert genannt) mehrerer Werte findet man, indem man die Werte zuerst der Größe nach ordnet (z.B. vom kleineren zum größeren) und dann den Wert in der Mitte der Reihe wählt.
Die Spannweite, also die Differenz zwischen größten und kleinsten Wert ist ein Streuungsmaß auch im Fall des Medians. Ein anderes Maß ist in diesem Fall der Interquartilsabstand (Symbol IQR). Median ist der Wert in der Mitte der geordneten Werte. Wenn wir den ersten viertel der geordneten Werte nehmen, dann ist der Wert am oberen Rand das untere (erste) Quartil. Am oberen Rand der ersten drei Viertel befindet sich das obere (dritte) Quartil[2]. Die Differenz der Werte des oberen und des unteren Quartils ist der Interquartilsabstand.
All diese Sachen können wir in einem sogenannten Boxplot Diagramm darstellen[3]. Das folgende Beispiel beruht auf einer Messreihe mit den folgenden 20 Datenpunkten:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
(unsortiert) | 9 | 6 | 7 | 7 | 3 | 9 | 10 | 1 | 8 | 7 | 9 | 9 | 8 | 10 | 5 | 10 | 10 | 9 | 10 | 8 |
(sortiert) | 1 | 3 | 5 | 6 | 7 | 7 | 7 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | 10 |
Ein Box-Plot hilft dabei sehr schnell einen Überblick über diese Daten zu erhalten. So erkennt man direkt, dass der Median (durchgezogene Linie) genau bei 8,5 liegt und dass je 25 % der Daten unter 7 und über 9,5 liegen, denn dies sind genau die Abmessungen der Box (die "Schachtel" in der Mitte), in der 50 % der Messwerte enthalten sind. Folglich ist auch der Interquartilsabstand, der der Länge der Box entspricht, genau 2,5 (also 9,5−7).
Dieser Box-Plot wurde mit Whiskern [4] bis zu einer Länge des 1,5-fachen Interquartilsabstands erstellt. Diese sind also maximal 3,75 Maßeinheiten lang. Allerdings reichen Whisker stets nur bis zu einem Wert aus den Daten, der sich noch innerhalb dieser 3,75 Einheiten befindet. Der obere Whisker verläuft also nur bis zu 10, da es keinen größeren Wert in den Daten gibt, und der untere Whisker nur bis 5, da der nächstkleinere Wert weiter als 3,75 vom Anfang der Box entfernt ist.
Die Werte von 1 und 3 werden im Box-Plot als Ausreißer markiert, da sie sich nicht innerhalb der Box oder der Whisker befinden. Bei diesen Werten sollte untersucht werden, ob es sich tatsächlich um Ausreißer oder um Tippfehler oder anderweitig auffällige Werte handelt.
- ↑ Wie eine (sogar extrem) ungleichmäßige Verteilung aussieht, bei der Median und Durchschnitt doch sogar gleich sein können, ist Thema eines weit vertiefenden Niveaus.
- ↑ (als zweite (mittlere) Quartil ist der Median gemeint)
- ↑ Folgender Teil wurde fast ohne Änderungen von wikipedia übernommen.
- ↑ auch "Antennen" genannt, das sind die Strecken bei den Werten 5 und 10 oben und unten vom "Box" im Boxplot
Diagramme
[Bearbeiten]Was ist ein Diagramm
[Bearbeiten]In Diagrammen kann man verschiedene Daten in einem Bild darstellen, die man dann schnell ablesen kann. Diagramme können helfen, einen schnellen Überblick zu bekommen, werden aber auch oft benutzt, um einen falschen Eindruck zu bewirken. Hier werden das Säulendiagramm, das Liniendiagramm, das Kreisdiagramm und das Boxplotdiagramm präsentiert, es gibt aber auch zahlreiche andere Diagrammarten, wie z.B. Punktdiagramm, Balkendiagramm usw.
Säulendiagramm
[Bearbeiten]Das Diagramm mit den Farben gibt die Anzahl der Steine in einem Kinderspiel, die eine gewisse Farbe haben. 4 Steine sind rot, 1 ist orange, 1 ist gelb, keine ist grün, es gibt 6 türkis usw. So ein Diagramm nennt man Säulendiagramm, weil es aus „Säulen“ besteht, wie in einem alten Tempel (Bild rechts). Die Farben sind sogenannte nominale Variablen. Nominale Variablen können wir zwar voneinander unterscheiden, wir können aber nicht z.B. sagen, dass rot "größer" als blau ist, wie z.B. wir sagen können, dass 4 mehr als 1 ist. Nominalen Variablen können wir also nicht der Größe nach ordnen. In diesem Diagramm können wir allerdings den sogenannten Modus ablesen, also welche Farbe am häufigsten vorkommt (Türkis).
Das folgende Diagramm gibt die Anzahl der Packungen, die eine gewisse Anzahl von Bananen pro Packung beinhalten. Die Anzahl der Bananen pro Packung ist eine sogenannte kardinale Größe (genauer gesagt: Variable einer Verhältnisskala). Wir können die einzelne Werte addieren, wir können auch dadurch einen Durchschnitt finden. Das geht allerdings nicht mit den Werten, die auf der x-Achse stehen (hier Bananen pro Packung), sondern nur mit den einzelnen Werten.Wenn die Frage z.B. ist, wie viele Packungen 4 Bananen haben, geht man so vor:
Auf der Achse unten (waagerechte Achse, x-Achse, auch Abszissenachse oder einfach Abszisse genannt) kann man die Bananen pro Packung ablesen, also kann man Bananen ablesen. Da wo 4 Bananen stehen (unten am Diagramm) befindet sich eine Säule. Man kann sehen, wie hoch diese Säule ist. Sie ist so hoch wie 5 Packungen. Die Anzahl der Packungen kann man links ablesen (auf der senkrechte Achse, der y-Achse, auch Ordinatenachse oder einfach Ordinate genannt). Also es gibt 5 Packungen mit 4 Bananen.
Wie viele Packungen haben 3 Bananen? Da, wo 3 Bananen stehen (unten, x-Achse), gibt es keine Säule! Die Höhe der Säule ist daher 0. Es gibt also keine (0) Packung, die 3 Bananen hat!
Wie viele Packungen haben keine Banane? Da, wo 0 Bananen stehen (unten, x-Achse), gibt es eine Säule, die 4 Packungen hoch ist. Es gibt also 4 Packungen mit keiner Banane!
Wie viele Packungen haben höchstens 3 Bananen? Höchstens bedeutet bis, also so viel wie 3 Bananen oder weniger (also 2, 1 oder keine Banane). Es gibt keine Packung mit 3 Bananen, 3 Pack. mit 2 Ban., 2 Pack. mit 1 Banane und 4 Pack. mit keiner Banane, also insgesamt 0+3+2+4=9 Pack..
Wie viele Packungen haben mindestens 3 Bananen? Mindestens bedeutet ab, also so viel wie 3 Bananen oder mehr (also 4, 5, 6 oder mehr Bananen). Es gibt keine Packung mit 3 Bananen, 5 Pack. mit 4 Ban. und 1 Pack. mit 5 Ban., also insgesamt 0+5+1=6 Pack..
Mittelwerte bei einem Säulendiagramm
[Bearbeiten]Aus dem Diagramm kann man eine Tabelle erzeugen!
Es gibt also 33 Bananen in 15 Packungen. Der Durchschnitt ist daher: B/P (Bananen pro Packung) im Durchschnitt.
Man kann auch den Median finden. Man soll die Werte (wie viele Bananen) einordnen. Wir haben 4 Packungen mit 0 Bananen (also die null kommt vier mal vor), 2 mit einer Banane, 3 mit 2 Bananen usw.:
Wie man sehen kann, 3 kommt nicht vor. Wir haben ja keine Packung mit 3 Bananen, also der Wert 3 Bananen kommt nicht vor! Wir haben insgesamt 15 Werte (15 Packungen). Der Wert in der Mitte ist der achte Wert, also 2. Der Median ist 2.
Welcher Wert kommt öfters vor? 4 Bananen kommt 5 mal vor (in 5 Packungen). Alle andere Werte kommen nicht so oft vor. Also 4 ist der Modalwert.
Liniendiagramme
[Bearbeiten]Lineare Funktion Diagramm
[Bearbeiten]In einem Liniendiagramm spricht man von einem Koordinatensystem. Es gibt zwei „Koordinaten“, die x-Achse (senkrecht) und die y-Achse (waagerecht).
In Balkendiagramm im vorherigen Absatz hatten wir diskrete Werte. Das Wort „diskrete“ bedeutet in Mathematik, dass man z.B. den Wert 2 und den Wert 3 (Bananen im letzten Beispiel) hat, aber keinen Wert dazwischen (z.B. keine 2,156 Bananen). Das Gegenteil von diskreten Werten sind die kontinuierlichen Werte. In unserem Beispiel hier sieht man eine sogenannte (quasi-kontinuierliche) Kostenkurve. Man kann in Diagramm ablesen, sowohl wie viel die Produktion von z.B. 60 T-Shirts kostet, als auch wie viele T-Shirts man mit z.B. 20€ produzieren kann. Für die erste Frage (wie viel kosten 60 T-Shirts) fängt man an der x-Achse an, da wo die Anzahl der T-Shirts angegeben ist. Man geht von 60 (T-Shirts) senkrecht nach oben, bis man die Linie (oft Kurve genannt) trifft. Dann geht man waagerecht zur y-Achse (hier links), bis man die y-Achse trifft, da wo die Kosten stehen. In diesem Fall sind die Kosten 25€. Umgekehrt geht man vor, wenn die Kosten angegeben sind. In unserem Beispiel sind 20€ gegeben. Wie viele T-Shirts kann man damit produzieren? Man fängt in diesem Fall mit der y-Achse an, da auf dieser Achse die Kosten angegeben sind. Man geht dann waagerecht rechts bis man die Linie trifft und dann senkrecht nach unten, bis man die x-Achse trifft. Da kann man 45 T-Shirts ablesen. Man kann also mit 20€ 45 T-Shirts produzieren.
Liniendiagramm
[Bearbeiten]Die Kurve in einem Liniendiagramm kann irgendeine Form haben (und nicht nur eine Gerade). Das folgende Beispiel zeigt die Körpertemperatur von einer Person (namens Gregor) am 12.3.15. Man kann sich aber vorstellen, was im Diagramm dargestellt wird. Man kann z.B. sehen welche Temperatur Gregor um 6 oder um 22.15 Uhr hatte, oder am welchen Zeitpunkten seine Temperatur z.B. 36,45°C oder 36,6°C war.
Kreisdiagramm
[Bearbeiten]Ein Kreisdiagramm zeigt Anteile des Ganzen. Es kann benutzt werden, um einen schnellen Überblick von statistischen Daten zu bekommen.
Ein Beispiel: In einer Klasse sind 8 Personen aus Österreich, 2 aus Deutschland, 2 aus der Türkei, 2 aus Serbien und 2 aus Tschechien. Diese Information kann man so wie im Bild in einem Kreisdiagramm darstellen. Die Hälfte des Kreises sind die 8 Personen aus Österreich. Die andere Hälfte ist in vier gleichen Teilen geteilt, also jeweils 2 Personen für Türkei, Deutschland, Serbien und Tschechien.